Search Results for author: Diederick Vermetten

Found 15 papers, 6 papers with code

Analyzing the Impact of Undersampling on the Benchmarking and Configuration of Evolutionary Algorithms

no code implementations20 Apr 2022 Diederick Vermetten, Hao Wang, Manuel López-Ibañez, Carola Doerr, Thomas Bäck

Particularly, we show that the number of runs used in many benchmarking studies, e. g., the default value of 15 suggested by the COCO environment, can be insufficient to reliably rank algorithms on well-known numerical optimization benchmarks.

Per-run Algorithm Selection with Warm-starting using Trajectory-based Features

no code implementations20 Apr 2022 Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel, Hao Wang, Tome Eftimov, Carola Doerr

In contrast to other recent work on online per-run algorithm selection, we warm-start the second optimizer using information accumulated during the first optimization phase.

Time Series Time Series Analysis

The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants

1 code implementation15 Apr 2022 Ana Kostovska, Diederick Vermetten, Sašo Džeroski, Carola Doerr, Peter Korošec, Tome Eftimov

In addition, we have shown that by using classifiers that take the features relevance on the model accuracy, we are able to predict the status of individual modules in the CMA-ES configurations.

Trajectory-based Algorithm Selection with Warm-starting

no code implementations13 Apr 2022 Anja Jankovic, Diederick Vermetten, Ana Kostovska, Jacob de Nobel, Tome Eftimov, Carola Doerr

We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances after a fixed budget of function evaluations.

Chaining of Numerical Black-box Algorithms: Warm-Starting and Switching Points

no code implementations13 Apr 2022 Dominik Schröder, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck

Lastly, with a sensitivity analysis, we find the actual performance gain is hugely affected by the switching point, and in some cases, the switching point yielding the best actual performance differs from the one computed from the theoretical gain.

The importance of being constrained: dealing with infeasible solutions in Differential Evolution and beyond

1 code implementation7 Mar 2022 Anna V. Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A. Mitran, Daniela Zaharie

Here, we demonstrate that, at least in algorithms based on Differential Evolution, this choice induces notably different behaviours - in terms of performance, disruptiveness and population diversity.

IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics

1 code implementation7 Nov 2021 Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck

IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other components of IOHprofiler such as IOHanalyzer, the module for interactive performance analysis and visualization.

Is there Anisotropy in Structural Bias?

no code implementations10 May 2021 Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, Hao Wang, Thomas Bäck

We find that anisotropy is very rare, and even in cases where it is present, there are clear tests for SB which do not rely on any assumptions of isotropy, so we can safely expand the suite of SB tests to encompass these kinds of deficiencies not found by the original tests.

OPTION: OPTImization Algorithm Benchmarking ONtology

no code implementations24 Apr 2021 Ana Kostovska, Diederick Vermetten, Carola Doerr, Sašo Džeroski, Panče Panov, Tome Eftimov

Many platforms for benchmarking optimization algorithms offer users the possibility of sharing their experimental data with the purpose of promoting reproducible and reusable research.

Tuning as a Means of Assessing the Benefits of New Ideas in Interplay with Existing Algorithmic Modules

no code implementations25 Feb 2021 Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck

However, when introducing a new component into an existing algorithm, assessing its potential benefits is a challenging task.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics

4 code implementations8 Jul 2020 Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck

An R programming interface is provided for users preferring to have a finer control over the implemented functionalities.

Towards Dynamic Algorithm Selection for Numerical Black-Box Optimization: Investigating BBOB as a Use Case

1 code implementation11 Jun 2020 Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck

One of the most challenging problems in evolutionary computation is to select from its family of diverse solvers one that performs well on a given problem.

Sequential vs. Integrated Algorithm Selection and Configuration: A Case Study for the Modular CMA-ES

no code implementations12 Dec 2019 Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck

In this work we compare sequential and integrated algorithm selection and configuration approaches for the case of selecting and tuning the best out of 4608 variants of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) tested on the Black Box Optimization Benchmark (BBOB) suite.

Hyperparameter Optimization

Online Selection of CMA-ES Variants

no code implementations16 Apr 2019 Diederick Vermetten, Sander van Rijn, Thomas Bäck, Carola Doerr

An analysis of module activation indicates which modules are most crucial for the different phases of optimizing each of the 24 benchmark problems.

Cannot find the paper you are looking for? You can Submit a new open access paper.