no code implementations • 19 Dec 2024 • João Carreira, Dilara Gokay, Michael King, Chuhan Zhang, Ignacio Rocco, Aravindh Mahendran, Thomas Albert Keck, Joseph Heyward, Skanda Koppula, Etienne Pot, Goker Erdogan, Yana Hasson, Yi Yang, Klaus Greff, Guillaume Le Moing, Sjoerd van Steenkiste, Daniel Zoran, Drew A. Hudson, Pedro Vélez, Luisa Polanía, Luke Friedman, Chris Duvarney, Ross Goroshin, Kelsey Allen, Jacob Walker, Rishabh Kabra, Eric Aboussouan, Jennifer Sun, Thomas Kipf, Carl Doersch, Viorica Pătrăucean, Dima Damen, Pauline Luc, Mehdi S. M. Sajjadi, Andrew Zisserman
Scaling has not yet been convincingly demonstrated for pure self-supervised learning from video.
no code implementations • 8 Nov 2024 • Sjoerd van Steenkiste, Daniel Zoran, Yi Yang, Yulia Rubanova, Rishabh Kabra, Carl Doersch, Dilara Gokay, Joseph Heyward, Etienne Pot, Klaus Greff, Drew A. Hudson, Thomas Albert Keck, Joao Carreira, Alexey Dosovitskiy, Mehdi S. M. Sajjadi, Thomas Kipf
By using a combination of cross-attention and positional embeddings we disentangle the representation structure and image structure.
2 code implementations • 1 Feb 2024 • Carl Doersch, Pauline Luc, Yi Yang, Dilara Gokay, Skanda Koppula, Ankush Gupta, Joseph Heyward, Ignacio Rocco, Ross Goroshin, João Carreira, Andrew Zisserman
To endow models with greater understanding of physics and motion, it is useful to enable them to perceive how solid surfaces move and deform in real scenes.
Ranked #1 on
Point Tracking
on TAP-Vid-RGB-Stacking
no code implementations • CVPR 2024 • João Carreira, Michael King, Viorica Pătrăucean, Dilara Gokay, Cătălin Ionescu, Yi Yang, Daniel Zoran, Joseph Heyward, Carl Doersch, Yusuf Aytar, Dima Damen, Andrew Zisserman
We introduce a framework for online learning from a single continuous video stream -- the way people and animals learn, without mini-batches, data augmentation or shuffling.
3 code implementations • ICCV 2023 • Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira, Andrew Zisserman
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Ranked #1 on
Visual Tracking
on Kinetics
1 code implementation • 22 Aug 2021 • Dilara Gokay, Enis Simsar, Efehan Atici, Alper Ahmetoglu, Atif Emre Yuksel, Pinar Yanardag
In this paper, we propose a graph-based image-to-image translation framework for generating images.