no code implementations • LREC 2022 • Nizar Habash, Muhammed AbuOdeh, Dima Taji, Reem Faraj, Jamila El Gizuli, Omar Kallas
We present the Camel Treebank (CAMELTB), a 188K word open-source dependency treebank of Modern Standard and Classical Arabic.
1 code implementation • UDW (COLING) 2020 • Dima Taji, Nizar Habash
We present PALMYRA 2. 0, a graphical dependency-tree visualization and editing software.
no code implementations • COLING 2020 • Yash Kankanampati, Joseph Le Roux, Nadi Tomeh, Dima Taji, Nizar Habash
In this paper we present a parsing model for projective dependency trees which takes advantage of the existence of complementary dependency annotations which is the case in Arabic, with the availability of CATiB and UD treebanks.
1 code implementation • LREC 2020 • Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl Eryani, Alex Erdmann, er, Nizar Habash
We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python.
no code implementations • 29 Jan 2019 • Dima Taji, Jamila El Gizuli, Nizar Habash
In this paper we present a dependency treebank of travel domain sentences in Modern Standard Arabic.
no code implementations • WS 2018 • Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani, Nizar Habash
We introduce CALIMA-Star, a very rich Arabic morphological analyzer and generator that provides functional and form-based morphological features as well as built-in tokenization, phonological representation, lexical rationality and much more.
no code implementations • MTSummit 2017 • Alexander Erdmann, Nizar Habash, Dima Taji, Houda Bouamor
We present the second ever evaluated Arabic dialect-to-dialect machine translation effort, and the first to leverage external resources beyond a small parallel corpus.
no code implementations • CONLL 2017 • Daniel Zeman, Martin Popel, Milan Straka, Jan Haji{\v{c}}, Joakim Nivre, Filip Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinkov{\'a}, Jan Haji{\v{c}} jr., Jaroslava Hlav{\'a}{\v{c}}ov{\'a}, V{\'a}clava Kettnerov{\'a}, Zde{\v{n}}ka Ure{\v{s}}ov{\'a}, Jenna Kanerva, Stina Ojala, Anna Missil{\"a}, Christopher D. Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Droganova, H{\'e}ctor Mart{\'\i}nez Alonso, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, M, Michael l, Jesse Kirchner, Hector Fern Alcalde, ez, Jana Strnadov{\'a}, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendon{\c{c}}a, L, Tatiana o, Rattima Nitisaroj, Josie Li
The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets.
no code implementations • WS 2017 • Dima Taji, Nizar Habash, Daniel Zeman
We describe the process of creating NUDAR, a Universal Dependency treebank for Arabic.
no code implementations • EACL 2017 • Nizar Habash, Nasser Zalmout, Dima Taji, Hieu Hoang, Maverick Alzate
We present Arab-Acquis, a large publicly available dataset for evaluating machine translation between 22 European languages and Arabic.
no code implementations • COLING 2016 • Anas Shahrour, Salam Khalifa, Dima Taji, Nizar Habash
In this paper, we present CamelParser, a state-of-the-art system for Arabic syntactic dependency analysis aligned with contextually disambiguated morphological features.