no code implementations • 12 Apr 2022 • Jiaheng Liu, Haoyu Qin, Yichao Wu, Jinyang Guo, Ding Liang, Ke Xu
In this work, we observe that mutual relation knowledge between samples is also important to improve the discriminative ability of the learned representation of the student model, and propose an effective face recognition distillation method called CoupleFace by additionally introducing the Mutual Relation Distillation (MRD) into existing distillation framework.
no code implementations • 30 Mar 2022 • Gang Li, Xiang Li, Yujie Wang, Shanshan Zhang, Yichao Wu, Ding Liang
Specifically, for pseudo labeling, existing works only focus on the classification score yet fail to guarantee the localization precision of pseudo boxes; For consistency training, the widely adopted random-resize training only considers the label-level consistency but misses the feature-level one, which also plays an important role in ensuring the scale invariance.
no code implementations • 9 Dec 2021 • Gang Li, Xiang Li, Yujie Wang, Shanshan Zhang, Yichao Wu, Ding Liang
Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively.
no code implementations • 24 Nov 2021 • Yujie Wang, Junqin Huang, Mengya Gao, Yichao Wu, Zhenfei Yin, Ding Liang, Junjie Yan
Transferring with few data in a general way to thousands of downstream tasks is becoming a trend of the foundation model's application.
no code implementations • 16 Nov 2021 • Jing Shao, Siyu Chen, Yangguang Li, Kun Wang, Zhenfei Yin, Yinan He, Jianing Teng, Qinghong Sun, Mengya Gao, Jihao Liu, Gengshi Huang, Guanglu Song, Yichao Wu, Yuming Huang, Fenggang Liu, Huan Peng, Shuo Qin, Chengyu Wang, Yujie Wang, Conghui He, Ding Liang, Yu Liu, Fengwei Yu, Junjie Yan, Dahua Lin, Xiaogang Wang, Yu Qiao
Enormous waves of technological innovations over the past several years, marked by the advances in AI technologies, are profoundly reshaping the industry and the society.
5 code implementations • ICLR 2022 • Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, Ping Luo
We build a family of models which surpass existing MLPs and even state-of-the-art Transformer-based models, e. g., Swin Transformer, while using fewer parameters and FLOPs.
Ranked #10 on
Semantic Segmentation
on DensePASS
7 code implementations • 25 Jun 2021 • Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao
We hope this work will facilitate state-of-the-art Transformer researches in computer vision.
Ranked #39 on
Object Detection
on COCO minival
no code implementations • 10 May 2021 • Zilong Wang, Mingjie Zhan, Houxing Ren, Zhaohui Hou, Yuwei Wu, Xingyan Zhang, Ding Liang
Forms are a common type of document in real life and carry rich information through textual contents and the organizational structure.
1 code implementation • 2 May 2021 • Wenhai Wang, Enze Xie, Xiang Li, Xuebo Liu, Ding Liang, Zhibo Yang, Tong Lu, Chunhua Shen
By systematically comparing with existing scene text representations, we show that our kernel representation can not only describe arbitrarily-shaped text but also well distinguish adjacent text.
no code implementations • 2 Mar 2021 • Jiaheng Liu, Yudong Wu, Yichao Wu, Zhenmao Li, Chen Ken, Ding Liang, Junjie Yan
In this study, we make a key observation that the local con-text represented by the similarities between the instance and its inter-class neighbors1plays an important role forFR.
9 code implementations • ICCV 2021 • Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao
Unlike the recently-proposed Transformer model (e. g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks.
Ranked #20 on
Semantic Segmentation
on DensePASS
2 code implementations • 21 Jan 2021 • Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu, Ding Liang, Ping Luo
This work presents a new fine-grained transparent object segmentation dataset, termed Trans10K-v2, extending Trans10K-v1, the first large-scale transparent object segmentation dataset.
Ranked #3 on
Semantic Segmentation
on Trans10K
no code implementations • ICCV 2021 • Jiaheng Liu, Yudong Wu, Yichao Wu, Chuming Li, Xiaolin Hu, Ding Liang, Mengyu Wang
To estimate the LID of each face image in the verification process, we propose two types of LID Estimation (LIDE) methods, which are reference-based and learning-based estimation methods, respectively.
no code implementations • Findings of the Association for Computational Linguistics 2020 • Zilong Wang, Mingjie Zhan, Xuebo Liu, Ding Liang
The table detection and handcrafted features in previous works cannot apply to all forms because of their requirements on formats.
2 code implementations • ECCV 2020 • Wenhai Wang, Xuebo Liu, Xiaozhong Ji, Enze Xie, Ding Liang, Zhibo Yang, Tong Lu, Chunhua Shen, Ping Luo
Unlike previous works that merely employed visual features for text detection, this work proposes a novel text spotter, named Ambiguity Eliminating Text Spotter (AE TextSpotter), which learns both visual and linguistic features to significantly reduce ambiguity in text detection.
2 code implementations • ECCV 2020 • Wenjia Wang, Enze Xie, Xuebo Liu, Wenhai Wang, Ding Liang, Chunhua Shen, Xiang Bai
For example, it outperforms LapSRN by over 5% and 8%on the recognition accuracy of ASTER and CRNN.
2 code implementations • CVPR 2020 • Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Ding Liang, Chunhua Shen, Ping Luo
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off-the-shelf detection methods.
Ranked #61 on
Instance Segmentation
on COCO test-dev
1 code implementation • ICCV 2019 • Xiao Jin, Baoyun Peng, Yi-Chao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Xiaolin Hu
However, we find that the representation of a converged heavy model is still a strong constraint for training a small student model, which leads to a high lower bound of congruence loss.
1 code implementation • 28 Mar 2019 • Jingchao Liu, Xuebo Liu, Jie Sheng, Ding Liang, Xin Li, Qingjie Liu
Scene text detection, an essential step of scene text recognition system, is to locate text instances in natural scene images automatically.
Ranked #1 on
Scene Text Detection
on ICDAR 2017 MLT
no code implementations • 28 Feb 2019 • Yingcheng Su, Shunfeng Zhou, Yi-Chao Wu, Tian Su, Ding Liang, Jiaheng Liu, Dixin Zheng, Yingxu Wang, Junjie Yan, Xiaolin Hu
Although deeper and larger neural networks have achieved better performance, the complex network structure and increasing computational cost cannot meet the demands of many resource-constrained applications.
7 code implementations • CVPR 2018 • Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, Junjie Yan
Incidental scene text spotting is considered one of the most difficult and valuable challenges in the document analysis community.
Ranked #4 on
Scene Text Detection
on ICDAR 2015
2 code implementations • 3 Feb 2015 • Yi Sun, Ding Liang, Xiaogang Wang, Xiaoou Tang
Very deep neural networks recently achieved great success on general object recognition because of their superb learning capacity.
Ranked #12 on
Face Verification
on Labeled Faces in the Wild