2 code implementations • 25 Dec 2023 • Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Dominic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, Matthew Willson
Weather forecasts are fundamentally uncertain, so predicting the range of probable weather scenarios is crucial for important decisions, from warning the public about hazardous weather, to planning renewable energy use.
2 code implementations • NeurIPS 2023 • Alexander Mathiasen, Hatem Helal, Kerstin Klaser, Paul Balanca, Josef Dean, Carlo Luschi, Dominique Beaini, Andrew Fitzgibbon, Dominic Masters
Similar benefits are yet to be unlocked for quantum chemistry, where the potential of deep learning is constrained by comparatively small datasets with 100k to 20M training examples.
1 code implementation • 6 Oct 2023 • Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja, Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller, Jama Hussein Mohamud, Ali Parviz, Michael Craig, Michał Koziarski, Jiarui Lu, Zhaocheng Zhu, Cristian Gabellini, Kerstin Klaser, Josef Dean, Cas Wognum, Maciej Sypetkowski, Guillaume Rabusseau, Reihaneh Rabbany, Jian Tang, Christopher Morris, Ioannis Koutis, Mirco Ravanelli, Guy Wolf, Prudencio Tossou, Hadrien Mary, Therence Bois, Andrew Fitzgibbon, Błażej Banaszewski, Chad Martin, Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields.
no code implementations • 29 Mar 2023 • Zhiyi Li, Douglas Orr, Valeriu Ohan, Godfrey Da Costa, Tom Murray, Adam Sanders, Deniz Beker, Dominic Masters
Furthermore, static sparsity in general outperforms dynamic sparsity.
1 code implementation • 6 Feb 2023 • Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, Deniz Beker, Andrew Fitzgibbon, Shenyang Huang, Ladislav Rampášek, Dominique Beaini
We present GPS++, a hybrid Message Passing Neural Network / Graph Transformer model for molecular property prediction.
1 code implementation • 18 Nov 2022 • Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, Deniz Beker, Ladislav Rampášek, Dominique Beaini
This technical report presents GPS++, the first-place solution to the Open Graph Benchmark Large-Scale Challenge (OGB-LSC 2022) for the PCQM4Mv2 molecular property prediction task.
no code implementations • 6 Jun 2022 • Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, Carlo Luschi
Given the current trend of increasing size and complexity of machine learning architectures, it has become of critical importance to identify new approaches to improve the computational efficiency of model training.
no code implementations • 7 Jun 2021 • Dominic Masters, Antoine Labatie, Zach Eaton-Rosen, Carlo Luschi
Much recent research has been dedicated to improving the efficiency of training and inference for image classification.
no code implementations • NeurIPS 2021 • Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, Carlo Luschi
We investigate the reasons for the performance degradation incurred with batch-independent normalization.
3 code implementations • 20 Apr 2018 • Dominic Masters, Carlo Luschi
Modern deep neural network training is typically based on mini-batch stochastic gradient optimization.