Search Results for author: Dongliang Wang

Found 12 papers, 5 papers with code

Kimi-VL Technical Report

1 code implementation10 Apr 2025 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang, Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, HaoNing Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie, Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang, Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao, Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen

We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2. 8B parameters in its language decoder (Kimi-VL-A3B).

Long-Context Understanding Mathematical Reasoning +3

Perfecting Imperfect Physical Neural Networks with Transferable Robustness using Sharpness-Aware Training

no code implementations19 Nov 2024 Tengji Xu, Zeyu Luo, Shaojie Liu, Li Fan, Qiarong Xiao, Benshan Wang, Dongliang Wang, Chaoran Huang

Here, we address the challenges with both offline and online training through a novel technique called Sharpness-Aware Training (SAT), where we innovatively leverage the geometry of the loss landscape to tackle the problems in training physical systems.

StreetSurf: Extending Multi-view Implicit Surface Reconstruction to Street Views

1 code implementation8 Jun 2023 Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding, Dongliang Wang, Yikang Li

We present a novel multi-view implicit surface reconstruction technique, termed StreetSurf, that is readily applicable to street view images in widely-used autonomous driving datasets, such as Waymo-perception sequences, without necessarily requiring LiDAR data.

Autonomous Driving Neural Rendering +2

AGENT: An Adaptive Grouping Entrapping Method of Flocking Systems

no code implementations25 Jun 2022 Chen Wang, Minqiang Gu, Wenxi Kuang, Dongliang Wang, Weicheng Luo, Zhaohui Shi, Zhun Fan

This study proposes a distributed algorithm that makes agents' adaptive grouping entrap multiple targets via automatic decision making, smooth flocking, and well-distributed entrapping.

Decision Making

ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation

no code implementations ICCV 2023 Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing Ding, Weihao Gan, Yichao Yan, Xin Jin, Xiaokang Yang, Wenjun Zeng, Wei Wu

We present a GAN-based Transformer for general action-conditioned 3D human motion generation, including not only single-person actions but also multi-person interactive actions.

Motion Generation

Learning Video Representations of Human Motion From Synthetic Data

no code implementations CVPR 2022 Xi Guo, Wei Wu, Dongliang Wang, Jing Su, Haisheng Su, Weihao Gan, Jian Huang, Qin Yang

In this paper, we take an early step towards video representation learning of human actions with the help of largescale synthetic videos, particularly for human motion representation enhancement.

Action Recognition Contrastive Learning +2

Regularity Learning via Explicit Distribution Modeling for Skeletal Video Anomaly Detection

1 code implementation7 Dec 2021 Shoubin Yu, Zhongyin Zhao, Haoshu Fang, Andong Deng, Haisheng Su, Dongliang Wang, Weihao Gan, Cewu Lu, Wei Wu

Different from pixel-based anomaly detection methods, pose-based methods utilize highly-structured skeleton data, which decreases the computational burden and also avoids the negative impact of background noise.

Anomaly Detection In Surveillance Videos Optical Flow Estimation +1

Transferable Knowledge-Based Multi-Granularity Aggregation Network for Temporal Action Localization: Submission to ActivityNet Challenge 2021

no code implementations27 Jul 2021 Haisheng Su, Peiqin Zhuang, Yukun Li, Dongliang Wang, Weihao Gan, Wei Wu, Yu Qiao

This technical report presents an overview of our solution used in the submission to 2021 HACS Temporal Action Localization Challenge on both Supervised Learning Track and Weakly-Supervised Learning Track.

Transfer Learning Weakly-supervised Learning +2

TSI: Temporal Saliency Integration for Video Action Recognition

no code implementations2 Jun 2021 Haisheng Su, Jinyuan Feng, Dongliang Wang, Weihao Gan, Wei Wu, Yu Qiao

Specifically, SME aims to highlight the motion-sensitive area through local-global motion modeling, where the saliency alignment and pyramidal feature difference are conducted successively between neighboring frames to capture motion dynamics with less noises caused by misaligned background.

Action Recognition Temporal Action Localization

Temporal Context Aggregation Network for Temporal Action Proposal Refinement

1 code implementation CVPR 2021 Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang, Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan, Changxin Gao, Nong Sang

In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement.

Action Detection Retrieval +2

Collaborative Distillation in the Parameter and Spectrum Domains for Video Action Recognition

no code implementations15 Sep 2020 Haisheng Su, Jing Su, Dongliang Wang, Weihao Gan, Wei Wu, Mengmeng Wang, Junjie Yan, Yu Qiao

Second, the parameter frequency distribution is further adopted to guide the student network to learn the appearance modeling process from the teacher.

Action Recognition Knowledge Distillation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.