Search Results for author: Dongyang Li

Found 9 papers, 4 papers with code

Does Long-Term Series Forecasting Need Complex Attention and Extra Long Inputs?

no code implementations8 Jun 2023 Daojun Liang, Haixia Zhang, Dongfeng Yuan, Xiaoyan Ma, Dongyang Li, Minggao Zhang

MABO allocates a process to each GPU via a queue mechanism, and then creates multiple trials at a time for asynchronous parallel search, which greatly reduces the search time.

GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark

no code implementations11 May 2023 Dongyang Li, Ruixue Ding, Qiang Zhang, Zheng Li, Boli Chen, Pengjun Xie, Yao Xu, Xin Li, Ning Guo, Fei Huang, Xiaofeng He

With a fast developing pace of geographic applications, automatable and intelligent models are essential to be designed to handle the large volume of information.

Entity Alignment Natural Language Understanding

HiCLRE: A Hierarchical Contrastive Learning Framework for Distantly Supervised Relation Extraction

1 code implementation Findings (ACL) 2022 Dongyang Li, Taolin Zhang, Nan Hu, Chengyu Wang, Xiaofeng He

In this paper, we propose a hierarchical contrastive learning Framework for Distantly Supervised relation extraction (HiCLRE) to reduce noisy sentences, which integrate the global structural information and local fine-grained interaction.

Contrastive Learning Data Augmentation +1

Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised Medical Image Segmentation

no code implementations5 Dec 2021 Yichi Zhang, Rushi Jiao, Qingcheng Liao, Dongyang Li, Jicong Zhang

In this paper, we propose a novel uncertainty-guided mutual consistency learning framework to effectively exploit unlabeled data by integrating intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.

Brain Tumor Segmentation Image Segmentation +3

Interpolation variable rate image compression

1 code implementation20 Sep 2021 Zhenhong Sun, Zhiyu Tan, Xiuyu Sun, Fangyi Zhang, Yichen Qian, Dongyang Li, Hao Li

Compression standards have been used to reduce the cost of image storage and transmission for decades.

Image Compression MS-SSIM +1

Spatiotemporal Entropy Model is All You Need for Learned Video Compression

2 code implementations13 Apr 2021 Zhenhong Sun, Zhiyu Tan, Xiuyu Sun, Fangyi Zhang, Dongyang Li, Yichen Qian, Hao Li

The framework of dominant learned video compression methods is usually composed of motion prediction modules as well as motion vector and residual image compression modules, suffering from its complex structure and error propagation problem.

Image Compression motion prediction +3

Learning Accurate Entropy Model with Global Reference for Image Compression

2 code implementations ICLR 2021 Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang Li, Zhenhong Sun, Hao Li, Rong Jin

In this work, we propose a novel Global Reference Model for image compression to effectively leverage both the local and the global context information, leading to an enhanced compression rate.

Image Compression

Prediction Modeling and Analysis for Telecom Customer Churn in Two Months

no code implementations1 Nov 2019 Lingling Yang, Dongyang Li, Yao Lu

In this paper, we propose a new T+2 churn customer prediction model, in which the churn customers in two months are recognized and the one-month window T+1 is reserved to carry out churn management strategies.

Management Vocal Bursts Valence Prediction

Aurora Guard: Real-Time Face Anti-Spoofing via Light Reflection

no code implementations27 Feb 2019 Yao Liu, Ying Tai, Jilin Li, Shouhong Ding, Chengjie Wang, Feiyue Huang, Dongyang Li, Wenshuai Qi, Rongrong Ji

In this paper, we propose a light reflection based face anti-spoofing method named Aurora Guard (AG), which is fast, simple yet effective that has already been deployed in real-world systems serving for millions of users.

Face Anti-Spoofing General Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.