no code implementations • 22 Jul 2023 • Suyoun Kim, Akshat Shrivastava, Duc Le, Ju Lin, Ozlem Kalinli, Michael L. Seltzer
End-to-end (E2E) spoken language understanding (SLU) systems that generate a semantic parse from speech have become more promising recently.
no code implementations • 22 May 2023 • Zhuangqun Huang, Gil Keren, Ziran Jiang, Shashank Jain, David Goss-Grubbs, Nelson Cheng, Farnaz Abtahi, Duc Le, David Zhang, Antony D'Avirro, Ethan Campbell-Taylor, Jessie Salas, Irina-Elena Veliche, Xi Chen
In this work, we explore text augmentation for ASR using large-scale pre-trained neural networks, and systematically compare those to traditional text augmentation methods.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
no code implementations • 15 Dec 2022 • Ke Li, Jay Mahadeokar, Jinxi Guo, Yangyang Shi, Gil Keren, Ozlem Kalinli, Michael L. Seltzer, Duc Le
Experiments on Librispeech and in-house data show relative WER reductions (WERRs) from 3% to 5% with a slight increase in model size and negligible extra token emission latency compared with fast-slow encoder based transducer.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 10 Nov 2022 • Andros Tjandra, Nayan Singhal, David Zhang, Ozlem Kalinli, Abdelrahman Mohamed, Duc Le, Michael L. Seltzer
Later, we use our optimal tokenization strategy to train multiple embedding and output model to further improve our result.
no code implementations • 2 Nov 2022 • Duc Le, Frank Seide, Yuhao Wang, Yang Li, Kjell Schubert, Ozlem Kalinli, Michael L. Seltzer
We show how factoring the RNN-T's output distribution can significantly reduce the computation cost and power consumption for on-device ASR inference with no loss in accuracy.
no code implementations • 31 Oct 2022 • Suyoun Kim, Ke Li, Lucas Kabela, Rongqing Huang, Jiedan Zhu, Ozlem Kalinli, Duc Le
In this work, we present our Joint Audio/Text training method for Transformer Rescorer, to leverage unpaired text-only data which is relatively cheaper than paired audio-text data.
no code implementations • 21 Oct 2022 • Duc Le, Panos P. Markopoulos
The L2-norm (sum of squared values) formulation of PCA promotes peripheral data points and, thus, makes PCA sensitive against outliers.
1 code implementation • 30 Sep 2022 • Thinh Phan, Duc Le, Patel Brijesh, Donald Adjeroh, Jingxian Wu, Morten Olgaard Jensen, Ngan Le
Electrocardiogram (ECG) signal is one of the most effective sources of information mainly employed for the diagnosis and prediction of cardiovascular diseases (CVDs) connected with the abnormalities in heart rhythm.
no code implementations • 13 Sep 2022 • Mu Yang, Andros Tjandra, Chunxi Liu, David Zhang, Duc Le, Ozlem Kalinli
Neural network pruning compresses automatic speech recognition (ASR) models effectively.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
1 code implementation • 29 Jun 2022 • Paden Tomasello, Akshat Shrivastava, Daniel Lazar, Po-chun Hsu, Duc Le, Adithya Sagar, Ali Elkahky, Jade Copet, Wei-Ning Hsu, Yossi Adi, Robin Algayres, Tu Ahn Nguyen, Emmanuel Dupoux, Luke Zettlemoyer, Abdelrahman Mohamed
Furthermore, in addition to the human-recorded audio, we are releasing a TTS-generated version to benchmark the performance for low-resource domain adaptation of end-to-end SLU systems.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
no code implementations • 19 Apr 2022 • Niko Moritz, Frank Seide, Duc Le, Jay Mahadeokar, Christian Fuegen
The two most popular loss functions for streaming end-to-end automatic speech recognition (ASR) are RNN-Transducer (RNN-T) and connectionist temporal classification (CTC).
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 4 Apr 2022 • Duc Le, Akshat Shrivastava, Paden Tomasello, Suyoun Kim, Aleksandr Livshits, Ozlem Kalinli, Michael L. Seltzer
We propose a novel deliberation-based approach to end-to-end (E2E) spoken language understanding (SLU), where a streaming automatic speech recognition (ASR) model produces the first-pass hypothesis and a second-pass natural language understanding (NLU) component generates the semantic parse by conditioning on both ASR's text and audio embeddings.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
no code implementations • 29 Mar 2022 • Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra, Ozlem Kalinli, Michael L Seltzer
Streaming ASR with strict latency constraints is required in many speech recognition applications.
no code implementations • 28 Jan 2022 • Antoine Bruguier, Duc Le, Rohit Prabhavalkar, Dangna Li, Zhe Liu, Bo wang, Eun Chang, Fuchun Peng, Ozlem Kalinli, Michael L. Seltzer
We propose Neural-FST Class Language Model (NFCLM) for end-to-end speech recognition, a novel method that combines neural network language models (NNLMs) and finite state transducers (FSTs) in a mathematically consistent framework.
no code implementations • 10 Nov 2021 • Alex Xiao, Weiyi Zheng, Gil Keren, Duc Le, Frank Zhang, Christian Fuegen, Ozlem Kalinli, Yatharth Saraf, Abdelrahman Mohamed
With 4. 5 million hours of English speech from 10 different sources across 120 countries and models of up to 10 billion parameters, we explore the frontiers of scale for automatic speech recognition.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 11 Oct 2021 • Suyoun Kim, Duc Le, Weiyi Zheng, Tarun Singh, Abhinav Arora, Xiaoyu Zhai, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
Measuring automatic speech recognition (ASR) system quality is critical for creating user-satisfying voice-driven applications.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
no code implementations • 6 Apr 2021 • Yuan Shangguan, Rohit Prabhavalkar, Hang Su, Jay Mahadeokar, Yangyang Shi, Jiatong Zhou, Chunyang Wu, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
As speech-enabled devices such as smartphones and smart speakers become increasingly ubiquitous, there is growing interest in building automatic speech recognition (ASR) systems that can run directly on-device; end-to-end (E2E) speech recognition models such as recurrent neural network transducers and their variants have recently emerged as prime candidates for this task.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 6 Apr 2021 • Jay Mahadeokar, Yangyang Shi, Yuan Shangguan, Chunyang Wu, Alex Xiao, Hang Su, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
In order to achieve flexible and better accuracy and latency trade-offs, the following techniques are used.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 5 Apr 2021 • Suyoun Kim, Abhinav Arora, Duc Le, Ching-Feng Yeh, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
We define SemDist as the distance between a reference and hypothesis pair in a sentence-level embedding space.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+13
no code implementations • 5 Apr 2021 • Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim, Yangyang Shi, Jay Mahadeokar, Julian Chan, Yuan Shangguan, Christian Fuegen, Ozlem Kalinli, Yatharth Saraf, Michael L. Seltzer
How to leverage dynamic contextual information in end-to-end speech recognition has remained an active research area.
no code implementations • 5 Apr 2021 • Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
DET gets similar accuracy as a baseline model with better latency on a large in-house data set by assigning a lightweight encoder for the beginning part of one utterance and a full-size encoder for the rest.
no code implementations • 16 Nov 2020 • Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Christian Fuegen, Michael L. Seltzer
End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent performance on generic transcription tasks.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
1 code implementation • 5 Nov 2020 • Chunxi Liu, Frank Zhang, Duc Le, Suyoun Kim, Yatharth Saraf, Geoffrey Zweig
End-to-end automatic speech recognition (ASR) models with a single neural network have recently demonstrated state-of-the-art results compared to conventional hybrid speech recognizers.
Ranked #13 on
Speech Recognition
on LibriSpeech test-clean
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 5 Nov 2020 • Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, Michael L. Seltzer
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 26 Oct 2020 • Suyoun Kim, Yuan Shangguan, Jay Mahadeokar, Antoine Bruguier, Christian Fuegen, Michael L. Seltzer, Duc Le
Recurrent Neural Network Transducer (RNN-T), like most end-to-end speech recognition model architectures, has an implicit neural network language model (NNLM) and cannot easily leverage unpaired text data during training.
1 code implementation • 21 Oct 2020 • Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, Frank Zhang, Duc Le, Mike Seltzer
For a low latency scenario with an average latency of 80 ms, Emformer achieves WER $3. 01\%$ on test-clean and $7. 09\%$ on test-other.
no code implementations • 7 Aug 2020 • Matthew Perez, Wenyu Jin, Duc Le, Noelle Carlozzi, Praveen Dayalu, Angela Roberts, Emily Mower Provost
Speech is a critical biomarker for Huntington Disease (HD), with changes in speech increasing in severity as the disease progresses.
no code implementations • 18 May 2020 • Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer
Transformers, originally proposed for natural language processing (NLP) tasks, have recently achieved great success in automatic speech recognition (ASR).
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
1 code implementation • 28 Oct 2019 • Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer
We explore options to use Transformer networks in neural transducer for end-to-end speech recognition.
no code implementations • 22 Oct 2019 • Duc Le, Thilo Koehler, Christian Fuegen, Michael L. Seltzer
Grapheme-based acoustic modeling has recently been shown to outperform phoneme-based approaches in both hybrid and end-to-end automatic speech recognition (ASR), even on non-phonemic languages like English.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 22 Oct 2019 • Yongqiang Wang, Abdel-rahman Mohamed, Duc Le, Chunxi Liu, Alex Xiao, Jay Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang, Christian Fuegen, Geoffrey Zweig, Michael L. Seltzer
We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition.
Ranked #21 on
Speech Recognition
on LibriSpeech test-other
no code implementations • 2 Oct 2019 • Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen, Geoffrey Zweig, Michael L. Seltzer
There is an implicit assumption that traditional hybrid approaches for automatic speech recognition (ASR) cannot directly model graphemes and need to rely on phonetic lexicons to get competitive performance, especially on English which has poor grapheme-phoneme correspondence.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1