1 code implementation • 1 Jun 2024 • Luis Rei, Dunja Mladenić, Mareike Dorozynski, Franz Rottensteiner, Thomas Schleider, Raphaël Troncy, Jorge Sebastián Lozano, Mar Gaitán Salvatella
We develop a multimodal classifier for the cultural heritage domain using a late fusion approach and introduce a novel dataset.
no code implementations • 12 Oct 2023 • Jože M. Rožanec, Gašper Petelin, João Costa, Blaž Bertalanič, Gregor Cerar, Marko Guček, Gregor Papa, Dunja Mladenić
This paper showcases two real-world use cases (home appliances classification and airport shuttle demand prediction) where a hierarchical model applied in the context of zero-inflated data leads to excellent results.
no code implementations • 3 Jul 2023 • Jože M. Rožanec, Elias Montini, Vincenzo Cutrona, Dimitrios Papamartzivanos, Timotej Klemenčič, Blaž Fortuna, Dunja Mladenić, Entso Veliou, Thanassis Giannetsos, Christos Emmanouilidis
Such collaboration can be realized considering two sub-fields of artificial intelligence: active learning and explainable artificial intelligence.
no code implementations • 19 Dec 2022 • Jože M. Rožanec, Patrik Zajec, Spyros Theodoropoulos, Erik Koehorst, Blaž Fortuna, Dunja Mladenić
Industry 4. 0 aims to optimize the manufacturing environment by leveraging new technological advances, such as new sensing capabilities and artificial intelligence.
no code implementations • 19 Dec 2022 • Jože M. Rožanec, Patrik Zajec, Spyros Theodoropoulos, Erik Koehorst, Blaž Fortuna, Dunja Mladenić
In this research, we compare supervised and unsupervised defect detection techniques and explore data augmentation techniques to mitigate the data imbalance in the context of automated visual inspection.
1 code implementation • 1 Dec 2022 • Swati Swati, Adrian Mladenić Grobelnik, Dunja Mladenić, Marko Grobelnik
With attended knowledge in our framework, the same model show an increase in 2. 2% accuracy and F1, and 3. 6% jaccard score.
no code implementations • 28 Sep 2022 • Jože M. Rožanec, Dimitrios Papamartzivanos, Entso Veliou, Theodora Anastasiou, Jelle Keizer, Blaž Fortuna, Dunja Mladenić
We propose using a two-layered deployment of machine learning models to prevent adversarial attacks.
no code implementations • 28 Sep 2022 • Bor Brecelj, Beno Šircelj, Jože M. Rožanec, Blaž Fortuna, Dunja Mladenić
In this research, we develop machine learning models to predict future sensor readings of a waste-to-fuel plant, which would enable proactive control of the plant's operations.
no code implementations • 12 Sep 2022 • Jože M. Rožanec, Luka Bizjak, Elena Trajkova, Patrik Zajec, Jelle Keizer, Blaž Fortuna, Dunja Mladenić
Our results show that the explored active learning settings can reduce the data labeling effort by between three and four percent without detriment to the overall quality goals, considering a threshold of p=0. 95.
no code implementations • 12 Apr 2022 • Jože M. Rožanec, Elena Trajkova, Inna Novalija, Patrik Zajec, Klemen Kenda, Blaž Fortuna, Dunja Mladenić
Artificial Intelligence models are increasingly used in manufacturing to inform decision-making.
no code implementations • 21 Mar 2022 • Jože M. Rožanec, Inna Novalija, Patrik Zajec, Klemen Kenda, Hooman Tavakoli, Sungho Suh, Entso Veliou, Dimitrios Papamartzivanos, Thanassis Giannetsos, Sofia Anna Menesidou, Ruben Alonso, Nino Cauli, Antonello Meloni, Diego Reforgiato Recupero, Dimosthenis Kyriazis, Georgios Sofianidis, Spyros Theodoropoulos, Blaž Fortuna, Dunja Mladenić, John Soldatos
Human-centricity is the core value behind the evolution of manufacturing towards Industry 5. 0.
no code implementations • 15 Oct 2021 • Jože M. Rožanec, Elena Trajkova, Paulien Dam, Blaž Fortuna, Dunja Mladenić
The use of machine learning models for automated visual inspection are expected to speed up the quality inspection up to 40%.
no code implementations • 6 Sep 2021 • Elena Trajkova, Jože M. Rožanec, Paulien Dam, Blaž Fortuna, Dunja Mladenić
Quality control is a key activity performed by manufacturing enterprises to ensure products meet quality standards and avoid potential damage to the brand's reputation.
no code implementations • 5 Jul 2021 • Georgios Sofianidis, Jože M. Rožanec, Dunja Mladenić, Dimosthenis Kyriazis
The implementation of Artificial Intelligence (AI) systems in the manufacturing domain enables higher production efficiency, outstanding performance, and safer operations, leveraging powerful tools such as deep learning and reinforcement learning techniques.
no code implementations • 5 Jul 2021 • Jože M. Rožanec, Inna Novalija, d Patrik Zajec, Klemen Kenda, Dunja Mladenić
The increasing digitalization of the manufacturing domain requires adequate knowledge modeling to capture relevant information.
no code implementations • 5 May 2021 • Jože M. Rožanec, Patrik Zajec, Klemen Kenda, Inna Novalija, Blaž Fortuna, Dunja Mladenić
We propose an ontology and knowledge graph to support collecting feedback regarding forecasts, forecast explanations, recommended decision-making options, and user actions.
no code implementations • 2 Apr 2021 • Jože M. Rožanec, Patrik Zajec, Klemen Kenda, Inna Novalija, Blaž Fortuna, Dunja Mladenić, Entso Veliou, Dimitrios Papamartzivanos, Thanassis Giannetsos, Sofia Anna Menesidou, Rubén Alonso, Nino Cauli, Diego Reforgiato Recupero, Dimosthenis Kyriazis, Georgios Sofianidis, Spyros Theodoropoulos, John Soldatos
There is a lack of a single architecture specification that addresses the needs of trusted and secure Artificial Intelligence systems with humans in the loop, such as human-centered manufacturing systems at the core of the evolution towards Industry 5. 0.
no code implementations • 1 Apr 2021 • Jože M. Rožanec, Dunja Mladenić
We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study.
Demand Forecasting
Explainable Artificial Intelligence (XAI)
no code implementations • 30 Mar 2021 • Patrik Zajec, Jože M. Rožanec, Inna Novalija, Blaž Fortuna, Dunja Mladenić, Klemen Kenda
The methodology can be extended to several use cases in manufacturing.
no code implementations • 23 Mar 2021 • Jože M. Rožanec, Jinzhi Lu, Jan Rupnik, Maja Škrjanc, Dunja Mladenić, Blaž Fortuna, Xiaochen Zheng, Dimitris Kiritsis
In this paper, we propose a knowledge graph modeling approach to construct actionable cognitive twins for capturing specific knowledge related to demand forecasting and production planning in a manufacturing plant.
no code implementations • 23 Mar 2021 • Jože M. Rožanec, Dunja Mladenić
Our research shows that global classification models are the best choice when predicting demand event occurrence.
1 code implementation • 20 Jul 2016 • Janez Starc, Dunja Mladenić
To evaluate the models, we propose a new metric -- the accuracy of the classifier trained on the generated dataset.
no code implementations • 5 Jan 2016 • Janez Starc, Dunja Mladenić
Both, the grammar and the semantic trees are used to learn the ontology on several levels -- classes, instances, taxonomic and non-taxonomic relations.