no code implementations • 10 Sep 2024 • Maria Bauza, Jose Enrique Chen, Valentin Dalibard, Nimrod Gileadi, Roland Hafner, Murilo F. Martins, Joss Moore, Rugile Pevceviciute, Antoine Laurens, Dushyant Rao, Martina Zambelli, Martin Riedmiller, Jon Scholz, Konstantinos Bousmalis, Francesco Nori, Nicolas Heess
We present DemoStart, a novel auto-curriculum reinforcement learning method capable of learning complex manipulation behaviors on an arm equipped with a three-fingered robotic hand, from only a sparse reward and a handful of demonstrations in simulation.
no code implementations • 20 Jun 2023 • Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X. Lee, Maria Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Żołna, Scott Reed, Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Tom Rothörl, José Enrique Chen, Yusuf Aytar, Dave Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell, Francesco Nori, Nicolas Heess
With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot as well as through adaptation using only 100-1000 examples for the target task.
no code implementations • 25 Apr 2023 • Massimo Caccia, Alexandre Galashov, Arthur Douillard, Amal Rannen-Triki, Dushyant Rao, Michela Paganini, Laurent Charlin, Marc'Aurelio Ranzato, Razvan Pascanu
The field of transfer learning is undergoing a significant shift with the introduction of large pretrained models which have demonstrated strong adaptability to a variety of downstream tasks.
no code implementations • 24 Feb 2023 • Jingwei Zhang, Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, Abbas Abdolmaleki, Dushyant Rao, Nicolas Heess, Martin Riedmiller
We conduct a set of experiments in the RGB-stacking environment, showing that planning with the learned skills and the associated model can enable zero-shot generalization to new tasks, and can further speed up training of policies via reinforcement learning.
no code implementations • 24 Nov 2022 • Giulia Vezzani, Dhruva Tirumala, Markus Wulfmeier, Dushyant Rao, Abbas Abdolmaleki, Ben Moran, Tuomas Haarnoja, Jan Humplik, Roland Hafner, Michael Neunert, Claudio Fantacci, Tim Hertweck, Thomas Lampe, Fereshteh Sadeghi, Nicolas Heess, Martin Riedmiller
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents.
no code implementations • 22 Oct 2022 • Andrei A. Rusu, Sebastian Flennerhag, Dushyant Rao, Razvan Pascanu, Raia Hadsell
By formally organising these modifications into several factors of variation, we are able to show that Analyses of Variance (ANOVA) are a potent tool for studying the effects of human-relevant domain changes on the learning and transfer performance of a deep reinforcement learning agent.
no code implementations • 5 Sep 2022 • Sasha Salter, Markus Wulfmeier, Dhruva Tirumala, Nicolas Heess, Martin Riedmiller, Raia Hadsell, Dushyant Rao
The ability to discover useful behaviours from past experience and transfer them to new tasks is considered a core component of natural embodied intelligence.
no code implementations • 12 Apr 2022 • Wenxuan Zhou, Steven Bohez, Jan Humplik, Abbas Abdolmaleki, Dushyant Rao, Markus Wulfmeier, Tuomas Haarnoja, Nicolas Heess
We propose the Offline Distillation Pipeline to break this trade-off by separating the training procedure into an online interaction phase and an offline distillation phase. Second, we find that training with the imbalanced off-policy data from multiple environments across the lifetime creates a significant performance drop.
no code implementations • ICLR 2022 • Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli, Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, Raia Hadsell
We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours, while retaining the flexibility of a continuous latent variable model.
no code implementations • ICML Workshop INNF 2021 • Polina Kirichenko, Mehrdad Farajtabar, Dushyant Rao, Balaji Lakshminarayanan, Nir Levine, Ang Li, Huiyi Hu, Andrew Gordon Wilson, Razvan Pascanu
Learning new tasks continuously without forgetting on a constantly changing data distribution is essential for real-world problems but extremely challenging for modern deep learning.
no code implementations • 30 Jul 2020 • Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, Martin Riedmiller
We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm.
no code implementations • 19 Nov 2019 • Sasha Salter, Dushyant Rao, Markus Wulfmeier, Raia Hadsell, Ingmar Posner
Image-based Reinforcement Learning is known to suffer from poor sample efficiency and generalisation to unseen visuals such as distractors (task-independent aspects of the observation space).
1 code implementation • NeurIPS 2019 • Dushyant Rao, Francesco Visin, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu, Raia Hadsell
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially.
no code implementations • 25 Sep 2019 • Sasha Salter, Dushyant Rao, Markus Wulfmeier, Raia Hadsell, Ingmar Posner
Applying reinforcement learning (RL) to physical systems presents notable challenges, given requirements regarding sample efficiency, safety, and physical constraints compared to simulated environments.
5 code implementations • ICLR 2019 • Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, Raia Hadsell
We show that it is possible to bypass these limitations by learning a data-dependent latent generative representation of model parameters, and performing gradient-based meta-learning in this low-dimensional latent space.
no code implementations • 13 Dec 2016 • Markus Wulfmeier, Dushyant Rao, Ingmar Posner
Recent advances have shown the capability of Fully Convolutional Neural Networks (FCN) to model cost functions for motion planning in the context of learning driving preferences purely based on demonstration data from human drivers.
no code implementations • 29 Sep 2016 • Julie Dequaire, Dushyant Rao, Peter Ondruska, Dominic Wang, Ingmar Posner
This paper presents an end-to-end approach for tracking static and dynamic objects for an autonomous vehicle driving through crowded urban environments.
no code implementations • 21 Sep 2016 • Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, Ingmar Posner
This paper proposes a computationally efficient approach to detecting objects natively in 3D point clouds using convolutional neural networks (CNNs).
Ranked #1 on Object Detection on KITTI Cyclists Hard