Search Results for author: Dzmitry Bahdanau

Found 47 papers, 29 papers with code

NNetscape Navigator: Complex Demonstrations for Web Agents Without a Demonstrator

1 code implementation3 Oct 2024 Shikhar Murty, Dzmitry Bahdanau, Christopher D. Manning

In contrast, NNetnav exploits the hierarchical structure of language instructions to make this search more tractable: complex instructions are typically decomposable into simpler subtasks, allowing NNetnav to automatically prune interaction episodes when an intermediate trajectory cannot be annotated with a meaningful sub-task.

Language Modelling

LLMs can learn self-restraint through iterative self-reflection

no code implementations15 May 2024 Alexandre Piché, Aristides Milios, Dzmitry Bahdanau, Chris Pal

This utility function can be used to score generation of different length and abstention.

LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders

1 code implementation9 Apr 2024 Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, Siva Reddy

We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB).

Contrastive Learning Decoder

Evaluating In-Context Learning of Libraries for Code Generation

1 code implementation16 Nov 2023 Arkil Patel, Siva Reddy, Dzmitry Bahdanau, Pradeep Dasigi

Contemporary Large Language Models (LLMs) exhibit a high degree of code generation and comprehension capability.

Code Generation In-Context Learning

PromptMix: A Class Boundary Augmentation Method for Large Language Model Distillation

1 code implementation22 Oct 2023 Gaurav Sahu, Olga Vechtomova, Dzmitry Bahdanau, Issam H. Laradji

Our specific PromptMix method consists of two steps: 1) generate challenging text augmentations near class boundaries; however, generating borderline examples increases the risk of false positives in the dataset, so we 2) relabel the text augmentations using a prompting-based LLM classifier to enhance the correctness of labels in the generated data.

Data Augmentation Language Modelling +3

MAGNIFICo: Evaluating the In-Context Learning Ability of Large Language Models to Generalize to Novel Interpretations

1 code implementation18 Oct 2023 Arkil Patel, Satwik Bhattamishra, Siva Reddy, Dzmitry Bahdanau

Additionally, our analysis uncovers the semantic predispositions in LLMs and reveals the impact of recency bias for information presented in long contexts.

In-Context Learning Text-To-SQL

In-Context Learning for Text Classification with Many Labels

no code implementations19 Sep 2023 Aristides Milios, Siva Reddy, Dzmitry Bahdanau

We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL.

In-Context Learning intent-classification +6

RepoFusion: Training Code Models to Understand Your Repository

no code implementations19 Jun 2023 Disha Shrivastava, Denis Kocetkov, Harm de Vries, Dzmitry Bahdanau, Torsten Scholak

We find these results to be a novel and compelling demonstration of the gains that training with repository context can bring.

Code Completion

StarCoder: may the source be with you!

4 code implementations9 May 2023 Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries

The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15. 5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention.

8k Code Generation +1

The Stack: 3 TB of permissively licensed source code

no code implementations20 Nov 2022 Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, Harm de Vries

Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language processing but also for code understanding and generation.

HumanEval

On the Compositional Generalization Gap of In-Context Learning

no code implementations15 Nov 2022 Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, Aaron Courville

In this work, we look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning.

In-Context Learning Semantic Parsing

LAGr: Label Aligned Graphs for Better Systematic Generalization in Semantic Parsing

1 code implementation ACL 2022 Dora Jambor, Dzmitry Bahdanau

In this work, we show that better systematic generalization can be achieved by producing the meaning representation directly as a graph and not as a sequence.

Semantic Parsing Systematic Generalization

Systematic Generalization with Edge Transformers

1 code implementation NeurIPS 2021 Leon Bergen, Timothy J. O'Donnell, Dzmitry Bahdanau

Recent research suggests that systematic generalization in natural language understanding remains a challenge for state-of-the-art neural models such as Transformers and Graph Neural Networks.

Dependency Parsing Natural Language Understanding +3

LAGr: Labeling Aligned Graphs for Improving Systematic Generalization in Semantic Parsing

1 code implementation14 Oct 2021 Dora Jambor, Dzmitry Bahdanau

In this work, we show that better systematic generalization can be achieved by producing the meaning representation (MR) directly as a graph and not as a sequence.

Semantic Parsing Systematic Generalization

Compositional Generalization in Dependency Parsing

no code implementations ACL 2022 Emily Goodwin, Siva Reddy, Timothy J. O'Donnell, Dzmitry Bahdanau

To test compositional generalization in semantic parsing, Keysers et al. (2020) introduced Compositional Freebase Queries (CFQ).

Dependency Parsing Semantic Parsing

PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

3 code implementations EMNLP 2021 Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau

Large pre-trained language models for textual data have an unconstrained output space; at each decoding step, they can produce any of 10, 000s of sub-word tokens.

Dialogue State Tracking Text-To-SQL +2

Understanding by Understanding Not: Modeling Negation in Language Models

1 code implementation NAACL 2021 Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni, Aaron Courville

To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus.

Language Modelling Negation

Jointly Learning Truth-Conditional Denotations and Groundings using Parallel Attention

no code implementations14 Apr 2021 Leon Bergen, Dzmitry Bahdanau, Timothy J. O'Donnell

We present a model that jointly learns the denotations of words together with their groundings using a truth-conditional semantics.

Question Answering Visual Question Answering

DuoRAT: Towards Simpler Text-to-SQL Models

1 code implementation NAACL 2021 Torsten Scholak, Raymond Li, Dzmitry Bahdanau, Harm de Vries, Chris Pal

Recent neural text-to-SQL models can effectively translate natural language questions to corresponding SQL queries on unseen databases.

Text-To-SQL

Towards Ecologically Valid Research on Language User Interfaces

no code implementations28 Jul 2020 Harm de Vries, Dzmitry Bahdanau, Christopher Manning

To this end, we describe what we deem an ideal methodology for machine learning research on LUIs and categorize five common ways in which recent benchmarks deviate from it.

BIG-bench Machine Learning valid

BabyAI 1.1

3 code implementations24 Jul 2020 David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio

This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90. 4 %.

Computational Efficiency Imitation Learning +3

Combating False Negatives in Adversarial Imitation Learning

no code implementations2 Feb 2020 Konrad Zolna, Chitwan Saharia, Leonard Boussioux, David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Yoshua Bengio

In adversarial imitation learning, a discriminator is trained to differentiate agent episodes from expert demonstrations representing the desired behavior.

Imitation Learning

CLOSURE: Assessing Systematic Generalization of CLEVR Models

3 code implementations12 Dec 2019 Dzmitry Bahdanau, Harm de Vries, Timothy J. O'Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua Bengio, Aaron Courville

In this work, we study how systematic the generalization of such models is, that is to which extent they are capable of handling novel combinations of known linguistic constructs.

Few-Shot Learning Systematic Generalization +1

Automated curriculum generation for Policy Gradients from Demonstrations

1 code implementation1 Dec 2019 Anirudh Srinivasan, Dzmitry Bahdanau, Maxime Chevalier-Boisvert, Yoshua Bengio

In this paper, we present a technique that improves the process of training an agent (using RL) for instruction following.

Instruction Following

Systematic Generalization: What Is Required and Can It Be Learned?

2 code implementations ICLR 2019 Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, Aaron Courville

Numerous models for grounded language understanding have been recently proposed, including (i) generic models that can be easily adapted to any given task and (ii) intuitively appealing modular models that require background knowledge to be instantiated.

Systematic Generalization Visual Question Answering (VQA)

BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning

6 code implementations ICLR 2019 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu Nguyen, Yoshua Bengio

Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts.

Grounded language learning

Learning to Understand Goal Specifications by Modelling Reward

1 code implementation ICLR 2019 Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, Edward Grefenstette

Recent work has shown that deep reinforcement-learning agents can learn to follow language-like instructions from infrequent environment rewards.

Deep Reinforcement Learning

Sequence Tutor: Conservative Fine-Tuning of Sequence Generation Models with KL-control

no code implementations ICML 2017 Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E. Turner, Douglas Eck

This paper proposes a general method for improving the structure and quality of sequences generated by a recurrent neural network (RNN), while maintaining information originally learned from data, as well as sample diversity.

Diversity Reinforcement Learning +1

Theano: A Python framework for fast computation of mathematical expressions

1 code implementation9 May 2016 The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements.

BIG-bench Machine Learning Clustering +2

Task Loss Estimation for Sequence Prediction

1 code implementation19 Nov 2015 Dzmitry Bahdanau, Dmitriy Serdyuk, Philémon Brakel, Nan Rosemary Ke, Jan Chorowski, Aaron Courville, Yoshua Bengio

Our idea is that this score can be interpreted as an estimate of the task loss, and that the estimation error may be used as a consistent surrogate loss.

Decoder Language Modelling +2

End-to-End Attention-based Large Vocabulary Speech Recognition

1 code implementation18 Aug 2015 Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, Yoshua Bengio

Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs).

Acoustic Modelling Language Modelling +2

Attention-Based Models for Speech Recognition

14 code implementations NeurIPS 2015 Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio

Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration.

Machine Translation Speech Recognition +1

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results

no code implementations4 Dec 2014 Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio

We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder that directly emits a stream of phonemes.

Decoder speech-recognition +1

Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation

no code implementations WS 2014 Jean Pouget-Abadie, Dzmitry Bahdanau, Bart van Merrienboer, Kyunghyun Cho, Yoshua Bengio

The authors of (Cho et al., 2014a) have shown that the recently introduced neural network translation systems suffer from a significant drop in translation quality when translating long sentences, unlike existing phrase-based translation systems.

Machine Translation Sentence +1

On the Properties of Neural Machine Translation: Encoder-Decoder Approaches

2 code implementations3 Sep 2014 Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, Yoshua Bengio

In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder--Decoder and a newly proposed gated recursive convolutional neural network.

Decoder Machine Translation +2

Cannot find the paper you are looking for? You can Submit a new open access paper.