no code implementations • EMNLP 2021 • Ananth Balashankar, Xuezhi Wang, Ben Packer, Nithum Thain, Ed Chi, Alex Beutel
By implementing RDI in the context of toxicity detection, we find that accounting for secondary attributes can significantly improve robustness, with improvements in sliced accuracy on the original dataset up to 7% compared to existing robustness methods.
no code implementations • 13 Jun 2023 • Anima Singh, Trung Vu, Raghunandan Keshavan, Nikhil Mehta, Xinyang Yi, Lichan Hong, Lukasz Heldt, Li Wei, Ed Chi, Maheswaran Sathiamoorthy
We showcase how we use them as a replacement of item IDs in a resource-constrained ranking model used in an industrial-scale video sharing platform.
no code implementations • 12 May 2023 • Yi Su, Xiangyu Wang, Elaine Ya Le, Liang Liu, Yuening Li, Haokai Lu, Benjamin Lipshitz, Sriraj Badam, Lukasz Heldt, Shuchao Bi, Ed Chi, Cristos Goodrow, Su-Lin Wu, Lexi Baugher, Minmin Chen
We conduct extensive live experiments on a large-scale commercial recommendation platform that serves billions of users to validate the new experiment designs, quantify the long-term values of exploration, and to verify the effectiveness of the adopted neural linear bandit algorithm for exploration.
no code implementations • 10 May 2023 • Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed Chi, Derek Zhiyuan Cheng
In this paper, we conduct a thorough examination of both CF and LLMs within the classic task of user rating prediction, which involves predicting a user's rating for a candidate item based on their past ratings.
1 code implementation • 31 Jan 2023 • Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli, Denny Zhou
We use this benchmark to measure the distractibility of cutting-edge prompting techniques for large language models, and find that the model performance is dramatically decreased when irrelevant information is included.
no code implementations • 2 Jul 2022 • Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Denny Zhou
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks.
no code implementations • 21 May 2022 • Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, Ed Chi
Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks.
Ranked #28 on
Arithmetic Reasoning
on GSM8K
no code implementations • 21 Mar 2022 • Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou
Chain-of-thought prompting combined with pre-trained large language models has achieved encouraging results on complex reasoning tasks.
Ranked #21 on
Arithmetic Reasoning
on GSM8K
(using extra training data)
10 code implementations • 28 Jan 2022 • Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou
We explore how generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning.
no code implementations • 26 Jan 2022 • Bo Chang, Can Xu, Matthieu Lê, Jingchen Feng, Ya Le, Sriraj Badam, Ed Chi, Minmin Chen
Recurrent recommender systems have been successful in capturing the temporal dynamics in users' activity trajectories.
2 code implementations • 20 Jan 2022 • Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, Yaguang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, Quoc Le
We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding.
Ranked #36 on
Code Generation
on HumanEval
no code implementations • ICLR 2021 • Yijie Guo, Shengyu Feng, Nicolas Le Roux, Ed Chi, Honglak Lee, Minmin Chen
Many real-world applications of reinforcement learning (RL) require the agent to learn from a fixed set of trajectories, without collecting new interactions.
no code implementations • 1 Jan 2021 • Yao Qin, Xuezhi Wang, Balaji Lakshminarayanan, Ed Chi, Alex Beutel
Despite this, most existing work simply reuses the original label from the clean data, and the choice of label accompanying the augmented data is relatively less explored.
no code implementations • 12 Oct 2020 • Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen, Ed Chi, Slav Petrov
Pre-trained models have revolutionized natural language understanding.
no code implementations • EMNLP 2020 • Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, Ed Chi
Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches.
no code implementations • 12 Feb 2020 • Ge Liu, Rui Wu, Heng-Tze Cheng, Jing Wang, Jayden Ooi, Lihong Li, Ang Li, Wai Lok Sibon Li, Craig Boutilier, Ed Chi
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments.
no code implementations • 8 Feb 2020 • Sungryull Sohn, Yin-Lam Chow, Jayden Ooi, Ofir Nachum, Honglak Lee, Ed Chi, Craig Boutilier
In batch reinforcement learning (RL), one often constrains a learned policy to be close to the behavior (data-generating) policy, e. g., by constraining the learned action distribution to differ from the behavior policy by some maximum degree that is the same at each state.
2 code implementations • ACM Conference on Recommender Systems 2019 • Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Ajit Kumthekar, Zhe Zhao, Li Wei, Ed Chi
However, batch loss is subject to sampling bias which could severely restrict model performance, particularly in the case of power-law distribution.
no code implementations • RecSys 2019 • Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi
In this paper, we introduce a large scale multi-objective ranking system for recommending what video to watch next on an industrial video sharing platform.
1 code implementation • 6 Dec 2018 • Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, Ed Chi
The contributions of the paper are: (1) scaling REINFORCE to a production recommender system with an action space on the orders of millions; (2) applying off-policy correction to address data biases in learning from logged feedback collected from multiple behavior policies; (3) proposing a novel top-K off-policy correction to account for our policy recommending multiple items at a time; (4) showcasing the value of exploration.
2 code implementations • ICLR 2019 • Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban, Xiyang Luo, Alan Mackey, Ofer Meshi
Ranking is a central task in machine learning and information retrieval.
9 code implementations • 19 Jul 2018 • Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, Ed Chi
In this work, we propose a novel multi-task learning approach, Multi-gate Mixture-of-Experts (MMoE), which explicitly learns to model task relationships from data.
no code implementations • ICLR 2019 • Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan Hong, Ed Chi, John Anderson
We study the problem of learning similarity functions over very large corpora using neural network embedding models.