no code implementations • 31 Jul 2020 • James Stokes, Javier Robledo Moreno, Eftychios A. Pnevmatikakis, Giuseppe Carleo
First-quantized deep neural network techniques are developed for analyzing strongly coupled fermionic systems on the lattice.
no code implementations • NeurIPS 2017 • Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne Churchland, Dmitri Chklovskii, Liam Paninski, Eftychios A. Pnevmatikakis
Optical imaging methods using calcium indicators are critical for monitoring the activity of large neuronal populations in vivo.
11 code implementations • 9 Sep 2014 • Eftychios A. Pnevmatikakis, Yuanjun Gao, Daniel Soudry, David Pfau, Clay Lacefield, Kira Poskanzer, Randy Bruno, Rafael Yuste, Liam Paninski
We present a structured matrix factorization approach to analyzing calcium imaging recordings of large neuronal ensembles.
Neurons and Cognition Quantitative Methods Applications
no code implementations • NeurIPS 2013 • David Pfau, Eftychios A. Pnevmatikakis, Liam Paninski
We show on model data that the parameters of latent linear dynamical systems can be recovered, and that even if the dynamics are not stationary we can still recover the true latent subspace.
no code implementations • NeurIPS 2013 • Eftychios A. Pnevmatikakis, Liam Paninski
We propose a compressed sensing (CS) calcium imaging framework for monitoring large neuronal populations, where we image randomized projections of the spatial calcium concentration at each timestep, instead of measuring the concentration at individual locations.
5 code implementations • 27 Nov 2013 • Eftychios A. Pnevmatikakis, Josh Merel, Ari Pakman, Liam Paninski
We present efficient Bayesian methods for extracting neuronal spiking information from calcium imaging data.
Neurons and Cognition Quantitative Methods Applications