no code implementations • 19 Apr 2023 • Hiwot Tadese Kassa, Paul Johnson, Jason Akers, Mrinmoy Ghosh, Andrew Tulloch, Dheevatsa Mudigere, Jongsoo Park, Xing Liu, Ronald Dreslinski, Ehsan K. Ardestani
In Deep Learning Recommendation Models (DLRM), sparse features capturing categorical inputs through embedding tables are the major contributors to model size and require high memory bandwidth.
1 code implementation • 19 Jan 2022 • Zhongyi Lin, Louis Feng, Ehsan K. Ardestani, Jaewon Lee, John Lundell, Changkyu Kim, Arun Kejariwal, John D. Owens
We show that our general performance model not only achieves low prediction error on DLRM, which has highly customized configurations and is dominated by multiple factors but also yields comparable accuracy on other compute-bound ML models targeted by most previous methods.
no code implementations • 21 Oct 2021 • Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Rampersad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen, Shishir Juluri, Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere, Krishnakumar Nair, Maxim Naumov, Chris Peterson, Mikhail Smelyanskiy, Vijay Rao
Deep Learning Recommendation Models (DLRM) are widespread, account for a considerable data center footprint, and grow by more than 1. 5x per year.
no code implementations • 12 Apr 2021 • Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, Jie Amy Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill Jia, Vijay Rao
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers.