Search Results for author: Ekaterina Tolstaya

Found 6 papers, 3 papers with code

Composable Learning with Sparse Kernel Representations

no code implementations26 Mar 2021 Ekaterina Tolstaya, Ethan Stump, Alec Koppel, Alejandro Ribeiro

We present a reinforcement learning algorithm for learning sparse non-parametric controllers in a Reproducing Kernel Hilbert Space.

Learning Connectivity for Data Distribution in Robot Teams

1 code implementation8 Mar 2021 Ekaterina Tolstaya, Landon Butler, Daniel Mox, James Paulos, Vijay Kumar, Alejandro Ribeiro

To overcome this challenge, we propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN).

Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation Learning

no code implementations29 Dec 2020 Fernando Gama, QingBiao Li, Ekaterina Tolstaya, Amanda Prorok, Alejandro Ribeiro

Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information.

Imitation Learning

Graph Neural Networks for Decentralized Controllers

no code implementations23 Mar 2020 Fernando Gama, Ekaterina Tolstaya, Alejandro Ribeiro

Dynamical systems comprised of autonomous agents arise in many relevant problems such as multi-agent robotics, smart grids, or smart cities.

Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks

1 code implementation25 Mar 2019 Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, Alejandro Ribeiro

We consider the problem of finding distributed controllers for large networks of mobile robots with interacting dynamics and sparsely available communications.

Robotics

Nonparametric Stochastic Compositional Gradient Descent for Q-Learning in Continuous Markov Decision Problems

1 code implementation19 Apr 2018 Alec Koppel, Ekaterina Tolstaya, Ethan Stump, Alejandro Ribeiro

We consider Markov Decision Problems defined over continuous state and action spaces, where an autonomous agent seeks to learn a map from its states to actions so as to maximize its long-term discounted accumulation of rewards.

Q-Learning Stochastic Optimization

Cannot find the paper you are looking for? You can Submit a new open access paper.