no code implementations • 24 May 2024 • Jokin Alcibar, Jose I. Aizpurua, Ekhi Zugasti
The combination of Neural Networks, Bayesian modelling concepts and ensemble learning strategies, form a valuable prognostics framework to combine uncertainty in a robust and accurate manner.
no code implementations • 26 May 2023 • Jokin Labaien, Tsuyoshi Idé, Pin-Yu Chen, Ekhi Zugasti, Xabier De Carlos
This paper addresses the task of anomaly diagnosis when the underlying data generation process has a complex spatio-temporal (ST) dependency.
no code implementations • 19 Apr 2021 • Jokin Labaien, Ekhi Zugasti, Xabier De Carlos
To overcome this issue, this paper presents Distribution Aware Deep Guided Counterfactual Explanations (DA-DGCEx), which adds a term to the DGCEx cost function that penalizes out of distribution counterfactual instances.
no code implementations • 7 Oct 2020 • Oscar Serradilla, Ekhi Zugasti, Urko Zurutuza
Given the growing amount of industrial data spaces worldwide, deep learning solutions have become popular for predictive maintenance, which monitor assets to optimise maintenance tasks.