2 code implementations • 8 Nov 2023 • Thomas Sanchez, Oscar Esteban, Yvan Gomez, Alexandre Pron, Mériam Koob, Vincent Dunet, Nadine Girard, Andras Jakab, Elisenda Eixarch, Guillaume Auzias, Meritxell Bach Cuadra
We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data.
1 code implementation • 7 Jul 2023 • Valentin Comte, Mireia Alenya, Andrea Urru, Judith Recober, Ayako Nakaki, Francesca Crovetto, Oscar Camara, Eduard Gratacós, Elisenda Eixarch, Fàtima Crispi, Gemma Piella, Mario Ceresa, Miguel A. González Ballester
Accurate segmentation of fetal brain magnetic resonance images is crucial for analyzing fetal brain development and detecting potential neurodevelopmental abnormalities.
2 code implementations • 12 Apr 2023 • Thomas Sanchez, Oscar Esteban, Yvan Gomez, Elisenda Eixarch, Meritxell Bach Cuadra
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies.
no code implementations • 20 Sep 2022 • Carla Sendra-Balcells, Víctor M. Campello, Jordina Torrents-Barrena, Yahya Ali Ahmed, Mustafa Elattar, Benard Ohene Botwe, Pempho Nyangulu, William Stones, Mohammed Ammar, Lamya Nawal Benamer, Harriet Nalubega Kisembo, Senai Goitom Sereke, Sikolia Z. Wanyonyi, Marleen Temmerman, Eduard Gratacós, Elisenda Bonet, Elisenda Eixarch, Kamil Mikolaj, Martin Grønnebæk Tolsgaard, Karim Lekadir
This framework shows promise for building new AI models generalisable across clinical centres with limited data acquired in challenging and heterogeneous conditions and calls for further research to develop new solutions for usability of AI in countries with less resources.