no code implementations • 28 Feb 2025 • Ali Keshavarzi, Elsa Angelini
Automated airway segmentation from lung CT scans is vital for diagnosing and monitoring pulmonary diseases.
1 code implementation • 14 Nov 2024 • Raphael Reme, Alasdair Newson, Elsa Angelini, Jean-Christophe Olivo-Marin, Thibault Lagache
Accurately tracking neuronal activity in behaving animals presents significant challenges due to complex motions and background noise.
no code implementations • 8 Nov 2024 • Maxime Jacovella, Ali Keshavarzi, Elsa Angelini
Despite advances with deep learning (DL), automated airway segmentation from chest CT scans continues to face challenges in segmentation quality and generalization across cohorts.
no code implementations • 29 Jul 2024 • Maxime Seince, Loic Le Folgoc, Luiz Augusto Facury de Souza, Elsa Angelini
The time, cost and expertise required to label images at the pixel-level for each new task has slowed down widespread adoption of the paradigm.
1 code implementation • 15 Jul 2024 • Antoine Habis, Vannary Meas-Yedid, Elsa Angelini, Jean-Christophe Olivo-Marin
This paper introduces a novel approach that combines unsupervised active contour models with deep learning for robust and adaptive image segmentation.
no code implementations • 5 Jul 2024 • Ali Keshavarzi, Elsa Angelini
We then incorporate these sparse representations in a standard supervised segmentation pipeline as a pretraining step to enhance the performance of the DL models.
no code implementations • 2 Aug 2023 • Ziyi Huang, Hongshan Liu, Haofeng Zhang, Xueshen Li, Haozhe Liu, Fuyong Xing, Andrew Laine, Elsa Angelini, Christine Hendon, Yu Gan
One key advantage of our model is its ability to train deep networks using SAM-generated pseudo labels without relying on a set of expert-level annotations while attaining good segmentation performance.
1 code implementation • CVPR 2024 • Xuzhe Zhang, Yuhao Wu, Elsa Angelini, Ang Li, Jia Guo, Jerod M. Rasmussen, Thomas G. O'Connor, Pathik D. Wadhwa, Andrea Parolin Jackowski, Hai Li, Jonathan Posner, Andrew F. Laine, Yun Wang
In this study, we introduce Masked Autoencoding and Pseudo-Labeling Segmentation (MAPSeg), a $\textbf{unified}$ UDA framework with great versatility and superior performance for heterogeneous and volumetric medical image segmentation.
no code implementations • 9 Jun 2022 • Ziyi Huang, Yu Gan, Theresa Lye, Yanchen Liu, Haofeng Zhang, Andrew Laine, Elsa Angelini, Christine Hendon
To lessen the need for pixel-wise labeling, we develop a two-stage deep learning framework for cardiac adipose tissue segmentation using image-level annotations on OCT images of human cardiac substrates.
no code implementations • 2 Jun 2022 • Chengliang Dai, Shuo Wang, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai
We evaluate the framework on two different brain image analysis tasks, namely brain tumour segmentation and whole brain segmentation.
1 code implementation • 19 Dec 2021 • Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Datwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gomez, Pablo Arbelaez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuan-han Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Lin-min Pei, Murat AK, Sarahi Rosas-Gonzalez, Ilyess Zemmoura, Clovis Tauber, Minh H. Vu, Tufve Nyholm, Tommy Lofstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Elodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-Andre Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko1, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel
In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation.
1 code implementation • 14 Jun 2021 • Xinzi He, Jia Guo, Xuzhe Zhang, Hanwen Bi, Sarah Gerard, David Kaczka, Amin Motahari, Eric Hoffman, Joseph Reinhardt, R. Graham Barr, Elsa Angelini, Andrew Laine
We introduce a recursive refinement network (RRN) for unsupervised medical image registration, to extract multi-scale features, construct normalized local cost correlation volume and recursively refine volumetric deformation vector fields.
Ranked #1 on
Image Registration
on DIR-LAB COPDgene
no code implementations • 31 Jan 2021 • Ziyi Huang, Haofeng Zhang, Andrew Laine, Elsa Angelini, Christine Hendon, Yu Gan
Supervised deep learning performance is heavily tied to the availability of high-quality labels for training.
no code implementations • 26 Jun 2020 • Chengliang Dai, Shuo Wang, Yuanhan Mo, Kaichen Zhou, Elsa Angelini, Yike Guo, Wenjia Bai
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks.
no code implementations • 2 Feb 2020 • Guang Yang, Jun Chen, Zhifan Gao, Shuo Li, Hao Ni, Elsa Angelini, Tom Wong, Raad Mohiaddin, Eva Nyktari, Ricardo Wage, Lei Xu, Yanping Zhang, Xiuquan Du, Heye Zhang, David Firmin, Jennifer Keegan
Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently (~0. 27 seconds to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60-68 2D slices).
no code implementations • 19 Nov 2019 • Shuo Wang, Chengliang Dai, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai
Gliomas are the most common malignant brain tumourswith intrinsic heterogeneity.
no code implementations • 28 Aug 2019 • Chengliang Dai, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai
Brain MR image segmentation is a key task in neuroimaging studies.
no code implementations • 6 Feb 2019 • Mario Zusag, Sujal Desai, Marcello Di Paolo, Thomas Semple, Anand Shah, Elsa Angelini
Chronic Pulmonary Aspergillosis (CPA) is a complex lung disease caused by infection with Aspergillus.
no code implementations • 12 Jun 2018 • Jun Chen, Guang Yang, Zhifan Gao, Hao Ni, Elsa Angelini, Raad Mohiaddin, Tom Wong, Yanping Zhang, Xiuquan Du, Heye Zhang, Jennifer Keegan, David Firmin
Late Gadolinium Enhanced Cardiac MRI (LGE-CMRI) for detecting atrial scars in atrial fibrillation (AF) patients has recently emerged as a promising technique to stratify patients, guide ablation therapy and predict treatment success.