Search Results for author: Emanuele Rodolà

Found 80 papers, 44 papers with code

Towards Precise Completion of Deformable Shapes

1 code implementation ECCV 2020 Oshri Halimi, Ido Imanuel, Or Litany, Giovanni Trappolini, Emanuele Rodolà, Leonidas Guibas, Ron Kimmel

Here, we claim that observing part of an object which was previously acquired as a whole, one could deal with both partial matching and shape completion in a holistic manner.

Object

Video Unlearning via Low-Rank Refusal Vector

no code implementations9 Jun 2025 Simone Facchiano, Stefano Saravalle, Matteo Migliarini, Edoardo De Matteis, Alessio Sampieri, Andrea Pilzer, Emanuele Rodolà, Indro Spinelli, Luca Franco, Fabio Galasso

This isolates the target concept while minimizing collateral unlearning of other semantics, thus preserving the visual quality of the generated video.

Instruction Following

Navigating the Latent Space Dynamics of Neural Models

no code implementations28 May 2025 Marco Fumero, Luca Moschella, Emanuele Rodolà, Francesco Locatello

Neural networks transform high-dimensional data into compact, structured representations, often modeled as elements of a lower dimensional latent space.

Memorization

Mergenetic: a Simple Evolutionary Model Merging Library

2 code implementations16 May 2025 Adrian Robert Minut, Tommaso Mencattini, Andrea Santilli, Donato Crisostomi, Emanuele Rodolà

Model merging allows combining the capabilities of existing models into a new one - post hoc, without additional training.

Evolutionary Algorithms model

Model-based Metric 3D Shape and Motion Reconstruction of Wild Bottlenose Dolphins in Drone-Shot Videos

no code implementations22 Apr 2025 Daniele Baieri, Riccardo Cicciarella, Michael Krützen, Emanuele Rodolà, Silvia Zuffi

We address the problem of estimating the metric 3D shape and motion of wild dolphins from monocular video, with the aim of assessing their body condition.

MASS: MoErging through Adaptive Subspace Selection

1 code implementation6 Apr 2025 Donato Crisostomi, Alessandro Zirilli, Antonio Andrea Gargiulo, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio Silvestri, Iacopo Masi, Emanuele Rodolà

Model merging has recently emerged as a lightweight alternative to ensembling, combining multiple fine-tuned models into a single set of parameters with no additional training overhead.

image-classification Image Classification

LoopGen: Training-Free Loopable Music Generation

1 code implementation6 Apr 2025 Davide Marincione, Giorgio Strano, Donato Crisostomi, Roberto Ribuoli, Emanuele Rodolà

We address this gap by modifying a non-autoregressive model (MAGNeT) to generate tokens in a circular pattern, letting the model attend to the beginning of the audio when creating its ending.

Music Generation

Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces

no code implementations CVPR 2025 Souhail Hadgi, Luca Moschella, Andrea Santilli, Diego Gomez, QiXing Huang, Emanuele Rodolà, Simone Melzi, Maks Ovsjanikov

In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces.

MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs

1 code implementation9 Feb 2025 Tommaso Mencattini, Adrian Robert Minut, Donato Crisostomi, Andrea Santilli, Emanuele Rodolà

Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware.

Humanity's Last Exam

no code implementations24 Jan 2025 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry Dodonov, Tung Nguyen, Jaeho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth Stokes, Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin, Mstyslav Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt, Will Yeadon, Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja Utpala, Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu, Zachary Giboney, Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui Cheng, Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiuyu Ren, Usman Qazi, Lianghui Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun Shi, Aras Bacho, Chris G. Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes Veith, Edward Vendrow, Doru Cojoc, Kengo Zenitani, Longke Tang, Yuqi Li, Joshua Vendrow, Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov Maksimov, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritsevskiy, Julien Guillod, Gözdenur Demir, Dakotah Martinez, Ben Pageler, Kevin Zhou, Saeed Soori, Ori Press, Henry Tang, Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, Joseph Marvin Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao, Dimitri Zvonkine, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate Stambaugh, Subrata Mishra, Tad Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeok Jin, Rafael Sayous, Stefan Ivanov, Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Andres Algaba, Kelsey Van den Houte, Lynn Van Der Sypt, Brecht Verbeken, David Noever, Alexei Kopylov, Benjamin Myklebust, Bikun Li, Lisa Schut, Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong Yang, John Maar, Julian Wykowski, Martí Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu, Ariel Ghislain Kemogne Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan, Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes, Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider, Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser, Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim Radionov, Václav Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświata, Josef Tkadlec, Alan Goldfarb, Chenguang Wang, Piotr Padlewski, Stanislaw Barzowski, Kyle Montgomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz, Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar Ängquist, Yanxu Chen, Harrison K Wang, Kalyan Ramakrishnan, Elliott Thornley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger, Peter Bradshaw, JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev, Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu, Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hendrik Kirchner, Maksym Ovchynnikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou Nie, Anna Sztyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani, Shreyas Verma, Prashant Joshi, Eli Meril, Ziqiao Ma, Jérémy Andréoletti, Raghav Singhal, Jacob Platnick, Volodymyr Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khoury, Nils Gustafsson, Marco Piccardo, Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khánh, Paul Rosu, Hannah Szlyk, Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William Alley, Kunyang Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob Loader, Freddie Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bosio, Fereshteh Kazemi, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Jiaqi Wang, Maria Inês S. Nunes, Jeremiah Milbauer, M Saiful Bari, ZiHao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Durand, Hossam Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff, Lynna Kvistad, Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh Shah, Xiaoxiang Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison Tee, Robin Zhang, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Jiayi Pan, Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind Jagota, Ronak Pradeep, Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Moritz Firsching, Carter Harris, Stefan Ciobâcă, Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank Agnihotri, Pavel Zhelnov, Mohammadreza Mofayezi, Alexander Piperski, David K. Zhang, Kostiantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duersch, Vage Taamazyan, Andrew Ho, Wenjie Ma, William Held, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Claudio Di Fratta, Edson Oliveira, Joseph W. Jackson, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Bita Golshani, David Stap, Egor Kretov, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Nick Winter, Miguel Orbegozo Rodriguez, Robert Lauff, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Fortuna Samuele, Fredrik Ekström, Angela Hammon, Oam Patel, Faraz Farhidi, George Medley, Forough Mohammadzadeh, Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Rayner Hernandez Perez, Daniel Pyda, Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Kenchi Okutsu, Mike Battaglia, Mohammad Maghsoudimehrabani, Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Handoko, Anton Peristyy, Stephen Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld, Anna-Katharina Dick, Cary Friday, Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mariana Costa, Hubeyb Gurdogan, Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah Carroll, Andrew R. Tawfeek, Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai, Evan Kim, Johan Ferret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Paolo Giordano, Philipp Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir Vinnikov, Ethan Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat, Lavr Vetoshkin, Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa, Nathan Cho, Xiuyu Li, Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien Laurendeau, Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna Zhou, Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Rai, Filippo Bigi, M. C. Boscá, Oleg Shumar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie, Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu, Stefano Cavalleri, Olle Häggström, Emil Verkama, Joshua Newbould, Hans Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Ting Wang, Yosi Kratish, Wen-Ding Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder de Witt, Pablo Hernández-Cámara, Emanuele Rodolà, Jules Robins, Dominic Williamson, Brad Raynor, Hao Qi, Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner, Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen, Loukmane Karim, Anna Liakhovitskaia, Nate Resman, Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad, Yana Malysheva, Daphiny Pottmaier, Omid Taheri, Stanley Stepanic, Samuel Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Ricardo Lorena, Krishnamurthy Iyer, Arshad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja Somrak, Eric Vergo, Juehang Qin, Benjámin Borbás, Eric Chu, Jack Lindsey, Antoine Jallon, I. M. J. McInnis, Evan Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer, Tran Đuc Huy, Hossein Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie, Brian Weber, Warren S. Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long, Lian, Marcus Abramovitch, Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios Mavroudis, Justin Xu, Pawan Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong, Thorben Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-An, Ankit Singh, Tong Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Gang Zhang, Zhehang Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman, Tim Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad Habibi, Sarah Hoback, Will Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Łucki, Russell Campbell, Asankhaya Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier Alapont, Alex Hoover, Gunjan Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deepakkumar Patil, David Outevsky, Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane, Priti Shukla, Ashley Cartwright, Sergei Bogdanov, Niels Mündler, Sören Möller, Luca Arnaboldi, Kunvar Thaman, Muhammad Rehan Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff, Glen Sherman, Mátyás Vincze, Siranut Usawasutsakorn, Dylan Ler, Anil Radhakrishnan, Innocent Enyekwe, Sk Md Salauddin, Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach, Chris Harjadi, Mohsen Bahaloohoreh, Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian, John Lai, Eric Singer, Justine Leon Uro, Greg Bateman, Mohamed Sayed, Ahmed Menshawy, Darling Duclosel, Dario Bezzi, Yashaswini Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram Siddh, Keith Krenek, Imad Ali Shah, Jun Jin, Scott Creighton, Denis Peskoff, Zienab EL-Wasif, Ragavendran P V, Michael Richmond, Joseph McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting Sun, Nikola Zubić, Samuele Sala, Stephen Ebert, Jean Kaddour, Manuel Schottdorf, Dianzhuo Wang, Gerol Petruzella, Alex Meiburg, Tilen Medved, Ali ElSheikh, S Ashwin Hebbar, Lorenzo Vaquero, Xianjun Yang, Jason Poulos, Vilém Zouhar, Sergey Bogdanik, Mingfang Zhang, Jorge Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu, Xue Wang, Ali Anil Demircali, Zhibai Jia, Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok, Aarush Sinha, Gaoxiang Luo, Long Le, Mickaël Noyé, Michał Perełkiewicz, Ioannis Pantidis, Tianbo Qi, Soham Sachin Purohit, Letitia Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata, Edoardo M. Ponti, Hanchen Li, Kaustubh Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang, Anupam Nayak, Diogo M. Caetano, Antonio A. W. L. Wong, Maria del Rio-Chanona, Dániel Kondor, Pieter Francois, Ed Chalstrey, Jakob Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser, Francisco-Javier Rodrigo-Ginés, Suchandra Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng Zhang, Hyunjun Kim, Ruiji Sun, Jianzhu Yao, Franck Dernoncourt, Satyapriya Krishna, Sina Rismanchian, Bonan Pu, Francesco Pinto, Yingheng Wang, Kumar Shridhar, Kalon J. Overholt, Glib Briia, Hieu Nguyen, David, Soler Bartomeu, Tony CY Pang, Adam Wecker, Yifan Xiong, Fanfei Li, Lukas S. Huber, Joshua Jaeger, Romano De Maddalena, Xing Han Lù, Yuhui Zhang, Claas Beger, Patrick Tser Jern Kon, Sean Li, Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang, Ankit Agrawal, Li S. Yifei, Zechen Zhang, Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao Li, Alex Slen, Shoubin Yu, Hyun Kyu Park, Gabriele Sarti, Marcin Briański, Alessandro Stolfo, Truong An Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani, Felix Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven, Abdurrahim Yilmaz, Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao Han, Jules Kreuer, Brian Rabern, Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos, Jonathon Kean, Dingsu Wang, Sina Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen Chang, Anjiang Wei, Alice Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee, Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamourn, Shuyu Wu, Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng Xi, Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqin Tu, SeJong Kim, Yushun Chen, Sara Vera Marjanović, Junwoo Ha, Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E. Zhang, Zhun Wang, Gaël Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee, Zhe Ye, Stefano Ermon, Ignacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park, Boyi Wei, Hongzheng Chen, Kunal Pai, Ahmed Elkhanany, Han Lin, Philipp D. Siedler, Jichao Fang, Ritwik Mishra, Károly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar Jain, Xi Lin, Mike Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin, Timothy Kang, Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster, Jorge Pretel Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben Racz, Wenchao Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gonçalves, Wei Hu, Kaushik Bar, Ondrej Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal, Bingsen Chen, Kutay Tire, Atak Talay Yücel, Brandon Christof, Veerupaksh Singla, Zijian Song, Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi, Martin Q. Ma, Joshua Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi Zhang, Vaidehi Patil, Ketan Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling Vieira, Alham Fikri Aji, Jae-Won Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel, Wei Hao, Kristof Meding, Sihan Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christopher Toukmaji, Eunmi Yu, Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen Qin, Roman Pflugfelder, James Bailey, Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun Yu, Peter E. Chen, Woongyeong Yeo, Eeshaan Jain, Sreekar Chigurupati, Julia Chernyavsky, Sai Prajwal Reddy, Subhashini Venugopalan, Hunar Batra, Core Francisco Park, Hieu Tran, Guilherme Maximiano, Genghan Zhang, Yizhuo Liang, Hu Shiyu, Rongwu Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gulati, Songyang Zhang, Peter Turchin, Christopher W. Bartlett, Christopher R. Scotese, Phuong M. Cao, Aakaash Nattanmai, Gordon McKellips, Anish Cheraku, Asim Suhail, Marvin Deng, Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael Liu, Advaith Avadhanam, David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua Lass, Surya Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal, Kevin Chen, Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam Lee, Ryan Yang, Roy Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark Peng, Tyler Osbey, Taozhi Wang, Daryl Echeazu, Timothy Wu, Spandan Patel, Vidhi Kulkarni, Vijaykaarti Sundarapandiyan, Ashley Zhang, Andrew Le, Zafir Nasim, Srikar Yalam, Ritesh Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha, Alex Zhang, Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo, Anwith Telluri, Summer Yue, Alexandr Wang, Dan Hendrycks

However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities.

Humanity's Last Exam Language Modeling +4

ATM: Improving Model Merging by Alternating Tuning and Merging

no code implementations5 Nov 2024 Luca Zhou, Daniele Solombrino, Donato Crisostomi, Maria Sofia Bucarelli, Fabrizio Silvestri, Emanuele Rodolà

Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM).

Federated Learning Task Arithmetic

ResiDual Transformer Alignment with Spectral Decomposition

no code implementations31 Oct 2024 Lorenzo Basile, Valentino Maiorca, Luca Bortolussi, Emanuele Rodolà, Francesco Locatello

When examined through the lens of their residual streams, a puzzling property emerges in transformer networks: residual contributions (e. g., attention heads) sometimes specialize in specific tasks or input attributes.

zero-shot-classification Zero-Shot Learning

Detecting and Approximating Redundant Computational Blocks in Neural Networks

no code implementations7 Oct 2024 Irene Cannistraci, Emanuele Rodolà, Bastian Rieck

In this paper, we investigate the emergence of these internal similarities across different layers in diverse neural architectures, showing that similarity patterns emerge independently of the datataset used.

Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions

1 code implementation10 Aug 2024 Michele Miranda, Elena Sofia Ruzzetti, Andrea Santilli, Fabio Massimo Zanzotto, Sébastien Bratières, Emanuele Rodolà

Large Language Models (LLMs) represent a significant advancement in artificial intelligence, finding applications across various domains.

Machine Unlearning

Latent Space Translation via Inverse Relative Projection

no code implementations21 Jun 2024 Valentino Maiorca, Luca Moschella, Marco Fumero, Francesco Locatello, Emanuele Rodolà

By formalizing the invertibility of angle-preserving relative representations and assuming the scale invariance of decoder modules in neural models, we can effectively use the relative space as an intermediary, independently projecting onto and from other semantically similar spaces.

Decoder Representation Learning +1

Latent Functional Maps: a spectral framework for representation alignment

no code implementations20 Jun 2024 Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, Emanuele Rodolà

Neural models learn data representations that lie on low-dimensional manifolds, yet modeling the relation between these representational spaces is an ongoing challenge.

Representation Learning Retrieval

$C^2M^3$: Cycle-Consistent Multi-Model Merging

1 code implementation28 May 2024 Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, Emanuele Rodolà

In this paper, we present a novel data-free method for merging neural networks in weight space.

Implicit-ARAP: Efficient Handle-Guided Deformation of High-Resolution Meshes and Neural Fields via Local Patch Meshing

no code implementations21 May 2024 Daniele Baieri, Filippo Maggioli, Zorah Lähner, Simone Melzi, Emanuele Rodolà

Then, we apply this representation in the setting of handle-guided deformation: we introduce two distinct pipelines, which make use of 3D neural fields to compute As-Rigid-As-Possible deformations of both high-resolution meshes and neural fields under a given set of constraints.

Naturalistic Music Decoding from EEG Data via Latent Diffusion Models

no code implementations15 May 2024 Emilian Postolache, Natalia Polouliakh, Hiroaki Kitano, Akima Connelly, Emanuele Rodolà, Luca Cosmo, Taketo Akama

In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings.

channel selection EEG

COCOLA: Coherence-Oriented Contrastive Learning of Musical Audio Representations

2 code implementations25 Apr 2024 Ruben Ciranni, Giorgio Mariani, Michele Mancusi, Emilian Postolache, Giorgio Fabbro, Emanuele Rodolà, Luca Cosmo

We present COCOLA (Coherence-Oriented Contrastive Learning for Audio), a contrastive learning method for musical audio representations that captures the harmonic and rhythmic coherence between samples.

Contrastive Learning Music Generation

Generalized Multi-Source Inference for Text Conditioned Music Diffusion Models

1 code implementation18 Mar 2024 Emilian Postolache, Giorgio Mariani, Luca Cosmo, Emmanouil Benetos, Emanuele Rodolà

Multi-Source Diffusion Models (MSDM) allow for compositional musical generation tasks: generating a set of coherent sources, creating accompaniments, and performing source separation.

Zero-Shot Duet Singing Voices Separation with Diffusion Models

2 code implementations13 Nov 2023 Chin-Yun Yu, Emilian Postolache, Emanuele Rodolà, György Fazekas

In this paper, we examine this problem in the context of duet singing voices separation, and propose a method to enforce the coherency of singer identity by splitting the mixture into overlapping segments and performing posterior sampling in an auto-regressive manner, conditioning on the previous segment.

From Charts to Atlas: Merging Latent Spaces into One

1 code implementation11 Nov 2023 Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro Liò, Emanuele Rodolà

Models trained on semantically related datasets and tasks exhibit comparable inter-sample relations within their latent spaces.

Latent Space Translation via Semantic Alignment

1 code implementation NeurIPS 2023 Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, Emanuele Rodolà

While different neural models often exhibit latent spaces that are alike when exposed to semantically related data, this intrinsic similarity is not always immediately discernible.

Translation

SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis

no code implementations23 Oct 2023 Marco Comunità, Riccardo F. Gramaccioni, Emilian Postolache, Emanuele Rodolà, Danilo Comminiello, Joshua D. Reiss

Sound design involves creatively selecting, recording, and editing sound effects for various media like cinema, video games, and virtual/augmented reality.

From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication

no code implementations2 Oct 2023 Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, Emanuele Rodolà

It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases.

Camoscio: an Italian Instruction-tuned LLaMA

1 code implementation31 Jul 2023 Andrea Santilli, Emanuele Rodolà

In recent years Large Language Models (LLMs) have increased the state of the art on several natural language processing tasks.

Language Modeling Language Modelling

Vector Quantile Regression on Manifolds

1 code implementation3 Jul 2023 Marco Pegoraro, Sanketh Vedula, Aviv A. Rosenberg, Irene Tallini, Emanuele Rodolà, Alex M. Bronstein

Quantile regression (QR) is a statistical tool for distribution-free estimation of conditional quantiles of a target variable given explanatory features.

quantile regression

Geometric Epitope and Paratope Prediction

no code implementations28 May 2023 Marco Pegoraro, Clémentine Dominé, Emanuele Rodolà, Petar Veličković, Andreea Deac

Antibody-antigen interactions play a crucial role in identifying and neutralizing harmful foreign molecules.

Prediction

Accelerating Transformer Inference for Translation via Parallel Decoding

3 code implementations17 May 2023 Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo Marin, Emanuele Rodolà

We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference.

Machine Translation Translation

Multimodal Neural Databases

1 code implementation2 May 2023 Giovanni Trappolini, Andrea Santilli, Emanuele Rodolà, Alon Halevy, Fabrizio Silvestri

The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them.

Information Retrieval Multimodal Deep Learning +1

Fluid Dynamics Network: Topology-Agnostic 4D Reconstruction via Fluid Dynamics Priors

no code implementations17 Mar 2023 Daniele Baieri, Stefano Esposito, Filippo Maggioli, Emanuele Rodolà

Representing 3D surfaces as level sets of continuous functions over $\mathbb{R}^3$ is the common denominator of neural implicit representations, which recently enabled remarkable progress in geometric deep learning and computer vision tasks.

4D reconstruction

Bootstrapping Parallel Anchors for Relative Representations

1 code implementation1 Mar 2023 Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Emanuele Rodolà

The use of relative representations for latent embeddings has shown potential in enabling latent space communication and zero-shot model stitching across a wide range of applications.

Semantic correspondence

Multi-Source Diffusion Models for Simultaneous Music Generation and Separation

1 code implementation4 Feb 2023 Giorgio Mariani, Irene Tallini, Emilian Postolache, Michele Mancusi, Luca Cosmo, Emanuele Rodolà

In this work, we define a diffusion-based generative model capable of both music synthesis and source separation by learning the score of the joint probability density of sources sharing a context.

Imputation Music Generation

Latent Spectral Regularization for Continual Learning

3 code implementations9 Jan 2023 Emanuele Frascaroli, Riccardo Benaglia, Matteo Boschini, Luca Moschella, Cosimo Fiorini, Emanuele Rodolà, Simone Calderara

While biological intelligence grows organically as new knowledge is gathered throughout life, Artificial Neural Networks forget catastrophically whenever they face a changing training data distribution.

Continual Learning Incremental Learning

Latent Autoregressive Source Separation

1 code implementation9 Jan 2023 Emilian Postolache, Giorgio Mariani, Michele Mancusi, Andrea Santilli, Luca Cosmo, Emanuele Rodolà

Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task performance.

Dimensionality Reduction

ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training

1 code implementation NeurIPS 2023 Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, Francesco Locatello

CLIP proved that aligning visual and language spaces is key to solving many vision tasks without explicit training, but required to train image and text encoders from scratch on a huge dataset.

Relative representations enable zero-shot latent space communication

no code implementations30 Sep 2022 Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, Emanuele Rodolà

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations.

Sparse Vicious Attacks on Graph Neural Networks

1 code implementation20 Sep 2022 Giovanni Trappolini, Valentino Maiorca, Silvio Severino, Emanuele Rodolà, Fabrizio Silvestri, Gabriele Tolomei

In this work, we focus on a specific, white-box attack to GNN-based link prediction models, where a malicious node aims to appear in the list of recommended nodes for a given target victim.

Link Prediction Prediction +1

KiloNeuS: A Versatile Neural Implicit Surface Representation for Real-Time Rendering

no code implementations22 Jun 2022 Stefano Esposito, Daniele Baieri, Stefan Zellmann, André Hinkenjann, Emanuele Rodolà

NeRF-based techniques fit wide and deep multi-layer perceptrons (MLPs) to a continuous radiance field that can be rendered from any unseen viewpoint.

NeRF

Metric Based Few-Shot Graph Classification

1 code implementation8 Jun 2022 Donato Crisostomi, Simone Antonelli, Valentino Maiorca, Luca Moschella, Riccardo Marin, Emanuele Rodolà

In this work, we tackle the problem of few-shot graph classification, showing that equipping a simple distance metric learning baseline with a state-of-the-art graph embedder allows to obtain competitive results on the task.

Data Augmentation Few-Shot Learning +3

Spectral Maps for Learning on Subgraphs

no code implementations30 May 2022 Marco Pegoraro, Riccardo Marin, Arianna Rampini, Simone Melzi, Luca Cosmo, Emanuele Rodolà

We demonstrate the benefits of incorporating spectral maps in graph learning pipelines, addressing scenarios where a node-to-node map is not well defined, or in the absence of exact isomorphism.

Graph Learning Knowledge Distillation

3D Human Pose Estimation Using Möbius Graph Convolutional Networks

no code implementations20 Mar 2022 Niloofar Azizi, Horst Possegger, Emanuele Rodolà, Horst Bischof

In particular, this allows us to directly and explicitly encode the transformation between joints, resulting in a significantly more compact representation.

3D Human Pose Estimation

Explanatory Learning: Beyond Empiricism in Neural Networks

1 code implementation25 Jan 2022 Antonio Norelli, Giorgio Mariani, Luca Moschella, Andrea Santilli, Giambattista Parascandolo, Simone Melzi, Emanuele Rodolà

We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e. g. explanations written in hieroglyphic -- by autonomously learning to interpret them.

Binary Classification Program Synthesis

Fish sounds: towards the evaluation of marine acoustic biodiversity through data-driven audio source separation

no code implementations13 Jan 2022 Michele Mancusi, Nicola Zonca, Emanuele Rodolà, Silvia Zuffi

Moreover, one of the causes of biodiversity loss is sound pollution; in data obtained from regions with loud anthropic noise, it is hard to separate the artificial from the fish sound manually.

Audio Source Separation

Graph Kernel Neural Networks

no code implementations14 Dec 2021 Luca Cosmo, Giorgia Minello, Alessandro Bicciato, Michael Bronstein, Emanuele Rodolà, Luca Rossi, Andrea Torsello

The convolution operator at the core of many modern neural architectures can effectively be seen as performing a dot product between an input matrix and a filter.

Graph Classification

Smoothness and effective regularizations in learned embeddings for shape matching

1 code implementation14 Dec 2021 Riccardo Marin, Souhaib Attaiki, Simone Melzi, Emanuele Rodolà, Maks Ovsjanikov

In this study, we analyze, for the first time, properties that arise in data-driven learned embedding and their relation to the shape-matching task.

Relation

Localized Shape Modelling with Global Coherence: An Inverse Spectral Approach

1 code implementation4 Aug 2021 Marco Pegoraro, Simone Melzi, Umberto Castellani, Riccardo Marin, Emanuele Rodolà

In this work, we address this problem by defining a data-driven model upon a family of linear operators (variants of the mesh Laplacian), whose spectra capture global and local geometric properties of the shape at hand.

valid

Shape registration in the time of transformers

1 code implementation NeurIPS 2021 Giovanni Trappolini, Luca Cosmo, Luca Moschella, Riccardo Marin, Simone Melzi, Emanuele Rodolà

In this paper, we propose a transformer-based procedure for the efficient registration of non-rigid 3D point clouds.

Cluster-driven Graph Federated Learning over Multiple Domains

no code implementations29 Apr 2021 Debora Caldarola, Massimiliano Mancini, Fabio Galasso, Marco Ciccone, Emanuele Rodolà, Barbara Caputo

Clustering may reduce heterogeneity by identifying the domains, but it deprives each cluster model of the data and supervision of others.

Clustering Federated Learning

Universal Spectral Adversarial Attacks for Deformable Shapes

no code implementations CVPR 2021 Arianna Rampini, Franco Pestarini, Luca Cosmo, Simone Melzi, Emanuele Rodolà

Our attacks are universal, in that they transfer across different shapes, different representations (meshes and point clouds), and generalize to previously unseen data.

Learning disentangled representations via product manifold projection

no code implementations2 Mar 2021 Marco Fumero, Luca Cosmo, Simone Melzi, Emanuele Rodolà

We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations.

Disentanglement

Non-Rigid Puzzles

no code implementations26 Nov 2020 Or Litany, Emanuele Rodolà, Alex Bronstein, Michael Bronstein, Daniel Cremers

We assume to be given a reference shape and its multiple parts undergoing a non-rigid deformation.

High-Resolution Augmentation for Automatic Template-Based Matching of Human Models

no code implementations19 Sep 2020 Riccardo Marin, Simone Melzi, Emanuele Rodolà, Umberto Castellani

This augmentation provides an effective workaround for the resolution limitations imposed by the adopted morphable model.

Vocal Bursts Intensity Prediction

LIMP: Learning Latent Shape Representations with Metric Preservation Priors

1 code implementation ECCV 2020 Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, Emanuele Rodolà

In this paper, we advocate the adoption of metric preservation as a powerful prior for learning latent representations of deformable 3D shapes.

Style Transfer

The Whole Is Greater Than the Sum of Its Nonrigid Parts

1 code implementation27 Jan 2020 Oshri Halimi, Ido Imanuel, Or Litany, Giovanni Trappolini, Emanuele Rodolà, Leonidas Guibas, Ron Kimmel

Here, we claim that observing part of an object which was previously acquired as a whole, one could deal with both partial matching and shape completion in a holistic manner.

Object

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence

3 code implementations16 Apr 2019 Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek Sharma, Peter Wonka, Maks Ovsjanikov

Our main observation is that high quality maps can be obtained even if the input correspondences are noisy or are encoded by a small number of coefficients in a spectral basis.

Graphics

Self-supervised Learning of Dense Shape Correspondence

1 code implementation6 Dec 2018 Oshri Halimi, Or Litany, Emanuele Rodolà, Alex Bronstein, Ron Kimmel

The resulting learning model is class-agnostic, and is able to leverage any type of deformable geometric data for the training phase.

Self-Supervised Learning

Isospectralization, or how to hear shape, style, and correspondence

1 code implementation CVPR 2019 Luca Cosmo, Mikhail Panine, Arianna Rampini, Maks Ovsjanikov, Michael M. Bronstein, Emanuele Rodolà

The question whether one can recover the shape of a geometric object from its Laplacian spectrum ('hear the shape of the drum') is a classical problem in spectral geometry with a broad range of implications and applications.

Style Transfer

Efficient Deformable Shape Correspondence via Kernel Matching

1 code implementation25 Jul 2017 Zorah Lähner, Matthias Vestner, Amit Boyarski, Or Litany, Ron Slossberg, Tal Remez, Emanuele Rodolà, Alex Bronstein, Michael Bronstein, Ron Kimmel, Daniel Cremers

We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality.

Product Manifold Filter: Non-Rigid Shape Correspondence via Kernel Density Estimation in the Product Space

no code implementations CVPR 2017 Matthias Vestner, Roee Litman, Emanuele Rodolà, Alex Bronstein, Daniel Cremers

Many algorithms for the computation of correspondences between deformable shapes rely on some variant of nearest neighbor matching in a descriptor space.

Density Estimation

Geometric deep learning on graphs and manifolds using mixture model CNNs

4 code implementations CVPR 2017 Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein

Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics.

Deep Learning Document Classification +8

Bayesian Inference of Bijective Non-Rigid Shape Correspondence

no code implementations12 Jul 2016 Matthias Vestner, Roee Litman, Alex Bronstein, Emanuele Rodolà, Daniel Cremers

Many algorithms for the computation of correspondences between deformable shapes rely on some variant of nearest neighbor matching in a descriptor space.

Bayesian Inference

Learning shape correspondence with anisotropic convolutional neural networks

no code implementations NeurIPS 2016 Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M. Bronstein

Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications.

Efficient Globally Optimal 2D-to-3D Deformable Shape Matching

no code implementations CVPR 2016 Zorah Lähner, Emanuele Rodolà, Frank R. Schmidt, Michael M. Bronstein, Daniel Cremers

We propose the first algorithm for non-rigid 2D-to-3D shape matching, where the input is a 2D shape represented as a planar curve and a 3D shape represented as a surface; the output is a continuous curve on the surface.

3D Shape Retrieval Retrieval

Point-wise Map Recovery and Refinement from Functional Correspondence

no code implementations18 Jun 2015 Emanuele Rodolà, Michael Moeller, Daniel Cremers

Since their introduction in the shape analysis community, functional maps have met with considerable success due to their ability to compactly represent dense correspondences between deformable shapes, with applications ranging from shape matching and image segmentation, to exploration of large shape collections.

Image Segmentation Semantic Segmentation

Partial Functional Correspondence

1 code implementation17 Jun 2015 Emanuele Rodolà, Luca Cosmo, Michael M. Bronstein, Andrea Torsello, Daniel Cremers

In this paper, we propose a method for computing partial functional correspondence between non-rigid shapes.

Cannot find the paper you are looking for? You can Submit a new open access paper.