Search Results for author: Emilio Monti

Found 6 papers, 2 papers with code

Semantic Parsing for Conversational Question Answering over Knowledge Graphs

1 code implementation28 Jan 2023 Laura Perez-Beltrachini, Parag Jain, Emilio Monti, Mirella Lapata

In this paper, we are interested in developing semantic parsers which understand natural language questions embedded in a conversation with a user and ground them to formal queries over definitions in a general purpose knowledge graph (KG) with very large vocabularies (covering thousands of concept names and relations, and millions of entities).

Conversational Question Answering Knowledge Graphs +1

Multilingual Neural Semantic Parsing for Low-Resourced Languages

1 code implementation Joint Conference on Lexical and Computational Semantics 2021 Menglin Xia, Emilio Monti

To evaluate our multilingual models on human-written sentences as opposed to machine translated ones, we introduce a new multilingual semantic parsing dataset in English, Italian and Japanese based on the Facebook Task Oriented Parsing (TOP) dataset.

Machine Translation Semantic Parsing +3

Don't Parse, Generate! A Sequence to Sequence Architecture for Task-Oriented Semantic Parsing

no code implementations30 Jan 2020 Subendhu Rongali, Luca Soldaini, Emilio Monti, Wael Hamza

Virtual assistants such as Amazon Alexa, Apple Siri, and Google Assistant often rely on a semantic parsing component to understand which action(s) to execute for an utterance spoken by its users.

Semantic Parsing slot-filling +1

Transfer Learning for Neural Semantic Parsing

no code implementations WS 2017 Xing Fan, Emilio Monti, Lambert Mathias, Markus Dreyer

The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL).

Semantic Parsing Transfer Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.