Search Results for author: Enhong Chen

Found 79 papers, 29 papers with code

Winning the CVPR'2022 AQTC Challenge: A Two-stage Function-centric Approach

1 code implementation20 Jun 2022 Shiwei Wu, Weidong He, Tong Xu, Hao Wang, Enhong Chen

Affordance-centric Question-driven Task Completion for Egocentric Assistant(AQTC) is a novel task which helps AI assistant learn from instructional videos and scripts and guide the user step-by-step.

Boosting Factorization Machines via Saliency-Guided Mixup

1 code implementation17 Jun 2022 Chenwang Wu, Defu Lian, Yong Ge, Min Zhou, Enhong Chen, DaCheng Tao

Second, considering that MixFM may generate redundant or even detrimental instances, we further put forward a novel Factorization Machine powered by Saliency-guided Mixup (denoted as SMFM).

Recommendation Systems

Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever

no code implementations30 May 2022 Jin Chen, Defu Lian, Yucheng Li, Baoyun Wang, Kai Zheng, Enhong Chen

Recommender retrievers aim to rapidly retrieve a fraction of items from the entire item corpus when a user query requests, with the representative two-tower model trained with the log softmax loss.

Non-Parametric Domain Adaptation for End-to-End Speech Translation

no code implementations23 May 2022 Yichao Du, Weizhi Wang, Zhirui Zhang, Boxing Chen, Tong Xu, Jun Xie, Enhong Chen

End-to-End Speech Translation (E2E-ST) has received increasing attention due to the potential of its less error propagation, lower latency, and fewer parameters.

Domain Adaptation Translation

Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification

no code implementations18 May 2022 Kai Zhang, Qi Liu, Zhenya Huang, Mingyue Cheng, Kun Zhang, Mengdi Zhang, Wei Wu, Enhong Chen

Existing studies in this task attach more attention to the sequence modeling of sentences while largely ignoring the rich domain-invariant semantics embedded in graph structures (i. e., the part-of-speech tags and dependency relations).

Classification Graph Attention +3

Preference Enhanced Social Influence Modeling for Network-Aware Cascade Prediction

no code implementations18 Apr 2022 Likang Wu, Hao Wang, Enhong Chen, Zhi Li, Hongke Zhao, Jianhui Ma

To that end, we propose a novel framework to promote cascade size prediction by enhancing the user preference modeling according to three stages, i. e., preference topics generation, preference shift modeling, and social influence activation.

Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation

1 code implementation CVPR 2022 Lin Chen, Huaian Chen, Zhixiang Wei, Xin Jin, Xiao Tan, Yi Jin, Enhong Chen

Such NWD can be coupled with the classifier to serve as a discriminator satisfying the K-Lipschitz constraint without the requirements of additional weight clipping or gradient penalty strategy.

Unsupervised Domain Adaptation

Reinforcement Routing on Proximity Graph for Efficient Recommendation

no code implementations23 Jan 2022 Chao Feng, Defu Lian, Xiting Wang, Zheng Liu, Xing Xie, Enhong Chen

Instead of searching the nearest neighbor for the query, we search the item with maximum inner product with query on the proximity graph.

Imitation Learning Recommendation Systems

Online Allocation with Two-sided Resource Constraints

no code implementations28 Dec 2021 Qixin Zhang, Wenbing Ye, Zaiyi Chen, Haoyuan Hu, Enhong Chen, Yang Yu

Moreover, an optimization method to estimate the optimal measure of feasibility is proposed with theoretical guarantee at the end of this paper.

VIRT: Improving Representation-based Models for Text Matching through Virtual Interaction

no code implementations8 Dec 2021 Dan Li, Yang Yang, Hongyin Tang, Jingang Wang, Tong Xu, Wei Wu, Enhong Chen

With the booming of pre-trained transformers, representation-based models based on Siamese transformer encoders have become mainstream techniques for efficient text matching.

Text Matching

Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness

1 code implementation24 Oct 2021 Dazhong Shen, Chuan Qin, Chao Wang, HengShu Zhu, Enhong Chen, Hui Xiong

As one of the most popular generative models, Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.

Variational Inference

Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filtering

1 code implementation13 Sep 2021 Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, Enhong Chen

Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.

Collaborative Filtering

DAE-GAN: Dynamic Aspect-aware GAN for Text-to-Image Synthesis

1 code implementation ICCV 2021 Shulan Ruan, Yong Zhang, Kun Zhang, Yanbo Fan, Fan Tang, Qi Liu, Enhong Chen

Text-to-image synthesis refers to generating an image from a given text description, the key goal of which lies in photo realism and semantic consistency.

Image Generation Sentence Embedding +1

SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item Recommendation

no code implementations18 Aug 2021 Kai Zhang, Hao Qian, Qi Liu, Zhiqiang Zhang, Jun Zhou, Jianhui Ma, Enhong Chen

Specifically, we first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.

Recommendation Systems

LadRa-Net: Locally-Aware Dynamic Re-read Attention Net for Sentence Semantic Matching

no code implementations6 Aug 2021 Kun Zhang, Guangyi Lv, Le Wu, Enhong Chen, Qi Liu, Meng Wang

In order to overcome this problem and boost the performance of attention mechanism, we propose a novel dynamic re-read attention, which can pay close attention to one small region of sentences at each step and re-read the important parts for better sentence representations.

Language Modelling Natural Language Inference +1

DGA-Net Dynamic Gaussian Attention Network for Sentence Semantic Matching

no code implementations9 Jun 2021 Kun Zhang, Guangyi Lv, Meng Wang, Enhong Chen

Then, we develop a Dynamic Gaussian Attention (DGA) to dynamically capture the important parts and corresponding local contexts from a detailed perspective.

Language Modelling Representation Learning

GraphMI: Extracting Private Graph Data from Graph Neural Networks

1 code implementation5 Jun 2021 Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, Enhong Chen

Then we design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.

Estimating Fund-Raising Performance for Start-up Projects from a Market Graph Perspective

no code implementations27 May 2021 Likang Wu, Zhi Li, Hongke Zhao, Qi Liu, Enhong Chen

Usually, this prediction is always with great challenges to making a comprehensive understanding of both the start-up project and market environment.

A Survey of Knowledge Tracing

1 code implementation6 May 2021 Qi Liu, Shuanghong Shen, Zhenya Huang, Enhong Chen, Yonghe Zheng

The recent COVID-19 epidemic has triggered the outbreak of online education, which has enabled both students and teachers to learn and teach at home.

Knowledge Tracing online learning

XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction

1 code implementation22 Apr 2021 Runlong Yu, Yuyang Ye, Qi Liu, Zihan Wang, Chunfeng Yang, Yucheng Hu, Enhong Chen

Motivated by this, we propose a novel Extreme Cross Network, abbreviated XCrossNet, which aims at learning dense and sparse feature interactions in an explicit manner.

Click-Through Rate Prediction Feature Engineering +1

Towards Variable-Length Textual Adversarial Attacks

no code implementations16 Apr 2021 Junliang Guo, Zhirui Zhang, Linlin Zhang, Linli Xu, Boxing Chen, Enhong Chen, Weihua Luo

In this way, our approach is able to more comprehensively find adversarial examples around the decision boundary and effectively conduct adversarial attacks.

Machine Translation Natural Language Processing +1

Inheritance-guided Hierarchical Assignment for Clinical Automatic Diagnosis

no code implementations27 Jan 2021 Yichao Du, Pengfei Luo, Xudong Hong, Tong Xu, Zhe Zhang, Chao Ren, Yi Zheng, Enhong Chen

Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.

Decision Making

Learning the Implicit Semantic Representation on Graph-Structured Data

1 code implementation16 Jan 2021 Likang Wu, Zhi Li, Hongke Zhao, Qi Liu, Jun Wang, Mengdi Zhang, Enhong Chen

Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole, while the implicit semantic associations behind highly complex interactions of graphs are largely unexploited.

Representation Learning

Quality meets Diversity: A Model-Agnostic Framework for Computerized Adaptive Testing

no code implementations15 Jan 2021 Haoyang Bi, Haiping Ma, Zhenya Huang, Yu Yin, Qi Liu, Enhong Chen, Yu Su, Shijin Wang

In this paper, we study a novel model-agnostic CAT problem, where we aim to propose a flexible framework that can adapt to different cognitive models.

Active Learning

Adam revisited: a weighted past gradients perspective

no code implementations1 Jan 2021 Hui Zhong, Zaiyi Chen, Chuan Qin, Zai Huang, Vincent W. Zheng, Tong Xu, Enhong Chen

Though many algorithms, such as AMSGRAD and ADAMNC, have been proposed to fix the non-convergence issues, achieving a data-dependent regret bound similar to or better than ADAGRAD is still a challenge to these methods.

R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic Matching

no code implementations16 Dec 2020 Kun Zhang, Le Wu, Guangyi Lv, Meng Wang, Enhong Chen, Shulan Ruan

Sentence semantic matching is one of the fundamental tasks in natural language processing, which requires an agent to determine the semantic relation among input sentences.

Natural Language Processing Relation Classification

Multi-Interactive Attention Network for Fine-grained Feature Learning in CTR Prediction

no code implementations13 Dec 2020 Kai Zhang, Hao Qian, Qing Cui, Qi Liu, Longfei Li, Jun Zhou, Jianhui Ma, Enhong Chen

In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest in the recent literature.

Click-Through Rate Prediction

Sampling-Decomposable Generative Adversarial Recommender

no code implementations NeurIPS 2020 Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, Enhong Chen

The GAN-style recommenders (i. e., IRGAN) addresses the challenge by learning a generator and a discriminator adversarially, such that the generator produces increasingly difficult samples for the discriminator to accelerate optimizing the discrimination objective.

Incorporating BERT into Parallel Sequence Decoding with Adapters

1 code implementation NeurIPS 2020 Junliang Guo, Zhirui Zhang, Linli Xu, Hao-Ran Wei, Boxing Chen, Enhong Chen

Our framework is based on a parallel sequence decoding algorithm named Mask-Predict considering the bi-directional and conditional independent nature of BERT, and can be adapted to traditional autoregressive decoding easily.

Machine Translation Natural Language Understanding +2

MMEA: Entity Alignment for Multi-Modal Knowledge Graphs

1 code implementation20 Aug 2020 Liyi Chen, Zhi Li, Yijun Wang, Tong Xu, Zhefeng Wang, Enhong Chen

To that end, in this paper, we propose a novel solution called Multi-Modal Entity Alignment (MMEA) to address the problem of entity alignment in a multi-modal view.

Entity Alignment Knowledge Graphs +1

Accuracy Prediction with Non-neural Model for Neural Architecture Search

1 code implementation9 Jul 2020 Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, Tie-Yan Liu

Considering that most architectures are represented as sequences of discrete symbols which are more like tabular data and preferred by non-neural predictors, in this paper, we study an alternative approach which uses non-neural model for accuracy prediction.

Neural Architecture Search

ASGN: An Active Semi-supervised Graph Neural Network for Molecular Property Prediction

1 code implementation7 Jul 2020 Zhongkai Hao, Chengqiang Lu, Zheyuan Hu, Hao Wang, Zhenya Huang, Qi Liu, Enhong Chen, Cheekong Lee

Here we propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.

Active Learning Molecular Property Prediction

Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation

no code implementations ACL 2020 Junliang Guo, Linli Xu, Enhong Chen

In this work, we introduce a jointly masked sequence-to-sequence model and explore its application on non-autoregressive neural machine translation{\textasciitilde}(NAT).

Language Modelling Machine Translation +2

Lightrec: A memory and search-efficient recommender system

1 code implementation International World Wide Web Conference 2020 Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, Xing Xie

On top of such a structure, LightRec will have an item represented as additive composition of B codewords, which are optimally selected from each of the codebooks.

Recommendation Systems

Attentive One-Dimensional Heatmap Regression for Facial Landmark Detection and Tracking

no code implementations5 Apr 2020 Shi Yin, Shangfei Wang, Xiaoping Chen, Enhong Chen

These 1D heatmaps reduce spatial complexity significantly compared to current heatmap regression methods, which use 2D heatmaps to represent the joint distributions of x and y coordinates.

Face Alignment Facial Landmark Detection +2

Domain Adaption for Knowledge Tracing

no code implementations14 Jan 2020 Song Cheng, Qi Liu, Enhong Chen

We refer to this problem as domain adaptation for knowledge tracing (DAKT) which contains two aspects: (1) how to achieve great knowledge tracing performance in each domain.

Domain Adaptation Knowledge Tracing

Deep Technology Tracing for High-tech Companies

no code implementations2 Jan 2020 Han Wu, Kun Zhang, Guangyi Lv, Qi Liu, Runlong Yu, Weihao Zhao, Enhong Chen, Jianhui Ma

Technological change and innovation are vitally important, especially for high-tech companies.

Variance Reduced Local SGD with Lower Communication Complexity

1 code implementation30 Dec 2019 Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, Yifei Cheng

To accelerate the training of machine learning models, distributed stochastic gradient descent (SGD) and its variants have been widely adopted, which apply multiple workers in parallel to speed up training.

Estimating Early Fundraising Performance of Innovations via Graph-based Market Environment Model

no code implementations14 Dec 2019 Likang Wu, Zhi Li, Hongke Zhao, Zhen Pan, Qi Liu, Enhong Chen

In the crowdfunding market, the early fundraising performance of the project is a concerned issue for both creators and platforms.

Efficient Pure Exploration in Adaptive Round model

1 code implementation NeurIPS 2019 Tianyuan Jin, Jieming Shi, Xiaokui Xiao, Enhong Chen

For PAC problem, we achieve optimal query complexity and use only $O(\log_{\frac{k}{\delta}}^*(n))$ rounds, which matches the lower bound of round complexity, while most of existing works need $\Theta(\log \frac{n}{k})$ rounds.

A Machine Learning-enhanced Robust P-Phase Picker for Real-time Seismic Monitoring

no code implementations21 Nov 2019 Dazhong Shen, Qi Zhang, Tong Xu, HengShu Zhu, Wenjia Zhao, Zikai Yin, Peilun Zhou, Lihua Fang, Enhong Chen, Hui Xiong

To this end, in this paper, we present a machine learning-enhanced framework based on ensemble learning strategy, EL-Picker, for the automatic identification of seismic P-phase arrivals on continuous and massive waveforms.

Ensemble Learning

Fine-Tuning by Curriculum Learning for Non-Autoregressive Neural Machine Translation

2 code implementations20 Nov 2019 Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen, Tie-Yan Liu

Non-autoregressive translation (NAT) models remove the dependence on previous target tokens and generate all target tokens in parallel, resulting in significant inference speedup but at the cost of inferior translation accuracy compared to autoregressive translation (AT) models.

Machine Translation Translation

Long-term Joint Scheduling for Urban Traffic

1 code implementation27 Oct 2019 Xianfeng Liang, Likang Wu, Joya Chen, Yang Liu, Runlong Yu, Min Hou, Han Wu, Yuyang Ye, Qi Liu, Enhong Chen

Recently, the traffic congestion in modern cities has become a growing worry for the residents.

Balanced One-shot Neural Architecture Optimization

1 code implementation24 Sep 2019 Renqian Luo, Tao Qin, Enhong Chen

One-shot NAS is proposed to reduce the expense but shows inferior performance against conventional NAS and is not adequately stable.

Neural Architecture Search

Is Heuristic Sampling Necessary in Training Deep Object Detectors?

13 code implementations11 Sep 2019 Joya Chen, Dong Liu, Tong Xu, Shiwei Wu, Yifei Cheng, Enhong Chen

In this paper, we challenge the necessity of such hard/soft sampling methods for training accurate deep object detectors.

General Classification Instance Segmentation +1

STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for Cooperative Traffic Light Control

no code implementations28 Aug 2019 Yanan Wang, Tong Xu, Xin Niu, Chang Tan, Enhong Chen, Hui Xiong

Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method.

Multi-agent Reinforcement Learning Q-Learning +1

Residual Objectness for Imbalance Reduction

no code implementations24 Aug 2019 Joya Chen, Dong Liu, Bin Luo, Xuezheng Peng, Tong Xu, Enhong Chen

For a long time, object detectors have suffered from extreme imbalance between foregrounds and backgrounds.

Neural Cognitive Diagnosis for Intelligent Education Systems

1 code implementation23 Aug 2019 Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Yuying Chen, Yu Yin, Zai Huang, Shijin Wang

Cognitive diagnosis is a fundamental issue in intelligent education, which aims to discover the proficiency level of students on specific knowledge concepts.

EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction

1 code implementation7 Jun 2019 Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, Guoping Hu

In EERNN, we simply summarize each student's state into an integrated vector and trace it with a recurrent neural network, where we design a bidirectional LSTM to learn the encoding of each exercise's content.

Knowledge Tracing

Chinese Embedding via Stroke and Glyph Information: A Dual-channel View

no code implementations3 Jun 2019 Hanqing Tao, Shiwei Tong, Tong Xu, Qi Liu, Enhong Chen

Recent studies have consistently given positive hints that morphology is helpful in enriching word embeddings.

Word Embeddings Word Similarity

Budgeted Policy Learning for Task-Oriented Dialogue Systems

no code implementations ACL 2019 Zhirui Zhang, Xiujun Li, Jianfeng Gao, Enhong Chen

This paper presents a new approach that extends Deep Dyna-Q (DDQ) by incorporating a Budget-Conscious Scheduling (BCS) to best utilize a fixed, small amount of user interactions (budget) for learning task-oriented dialogue agents.

Task-Oriented Dialogue Systems

Promotion of Answer Value Measurement with Domain Effects in Community Question Answering Systems

no code implementations1 Jun 2019 Binbin Jin, Enhong Chen, Hongke Zhao, Zhenya Huang, Qi Liu, HengShu Zhu, Shui Yu

Existing solutions mainly exploit the syntactic or semantic correlation between a question and its related answers (Q&A), where the multi-facet domain effects in CQA are still underexplored.

Answer Selection Community Question Answering

Explainable Fashion Recommendation: A Semantic Attribute Region Guided Approach

no code implementations30 May 2019 Min Hou, Le Wu, Enhong Chen, Zhi Li, Vincent W. Zheng, Qi Liu

When making cloth decisions, people usually show preferences for different semantic attributes (e. g., the clothes with v-neck collar).

Ranked #2 on Recommendation Systems on Amazon Fashion (using extra training data)

Recommendation Systems

QuesNet: A Unified Representation for Heterogeneous Test Questions

no code implementations27 May 2019 Yu Yin, Qi Liu, Zhenya Huang, Enhong Chen, Wei Tong, Shijin Wang, Yu Su

Then we propose a two-level hierarchical pre-training algorithm to learn better understanding of test questions in an unsupervised way.

Language Modelling online learning

MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network

no code implementations27 May 2019 Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, Wen Su

Recently, the Network Representation Learning (NRL) techniques, which represent graph structure via low-dimension vectors to support social-oriented application, have attracted wide attention.

Multi-Task Learning Representation Learning

Transcribing Content from Structural Images with Spotlight Mechanism

no code implementations27 May 2019 Yu Yin, Zhenya Huang, Enhong Chen, Qi Liu, Fuzheng Zhang, Xing Xie, Guoping Hu

Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly.

Exploiting Cognitive Structure for Adaptive Learning

no code implementations23 May 2019 Qi Liu, Shiwei Tong, Chuanren Liu, Hongke Zhao, Enhong Chen, Haiping Ma, Shijin Wang

Although it is well known that modeling the cognitive structure including knowledge level of learners and knowledge structure (e. g., the prerequisite relations) of learning items is important for learning path recommendation, existing methods for adaptive learning often separately focus on either knowledge levels of learners or knowledge structure of learning items.

Enhancing Person-Job Fit for Talent Recruitment: An Ability-aware Neural Network Approach

no code implementations21 Dec 2018 Chuan Qin, HengShu Zhu, Tong Xu, Chen Zhu, Liang Jiang, Enhong Chen, Hui Xiong

The wide spread use of online recruitment services has led to information explosion in the job market.

Bidirectional Generative Adversarial Networks for Neural Machine Translation

no code implementations CONLL 2018 Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, Enhong Chen

To address this issue and stabilize the GAN training, in this paper, we propose a novel Bidirectional Generative Adversarial Network for Neural Machine Translation (BGAN-NMT), which aims to introduce a generator model to act as the discriminator, whereby the discriminator naturally considers the entire translation space so that the inadequate training problem can be alleviated.

Language Modelling Machine Translation +1

Style Transfer as Unsupervised Machine Translation

no code implementations23 Aug 2018 Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang, Peng Chen, Mu Li, Ming Zhou, Enhong Chen

Language style transferring rephrases text with specific stylistic attributes while preserving the original attribute-independent content.

Style Transfer Translation +1

Neural Architecture Optimization

5 code implementations NeurIPS 2018 Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, Tie-Yan Liu

The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy.

General Classification Image Classification +2

Universal Stagewise Learning for Non-Convex Problems with Convergence on Averaged Solutions

no code implementations ICLR 2019 Zaiyi Chen, Zhuoning Yuan, Jin-Feng Yi, Bo-Wen Zhou, Enhong Chen, Tianbao Yang

For example, there is still a lack of theories of convergence for SGD and its variants that use stagewise step size and return an averaged solution in practice.

Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors

no code implementations3 Aug 2018 Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, Enhong Chen

In this paper, we propose a novel Behavior-Intensive Neural Network (BINN) for next-item recommendation by incorporating both users' historical stable preferences and present consumption motivations.

Session-Based Recommendations

SADAGRAD: Strongly Adaptive Stochastic Gradient Methods

no code implementations ICML 2018 Zaiyi Chen, Yi Xu, Enhong Chen, Tianbao Yang

Although the convergence rates of existing variants of ADAGRAD have a better dependence on the number of iterations under the strong convexity condition, their iteration complexities have a explicitly linear dependence on the dimensionality of the problem.

Joint Training for Neural Machine Translation Models with Monolingual Data

no code implementations1 Mar 2018 Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, Enhong Chen

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough.

Domain Adaptation Machine Translation +1

Enhancing Network Embedding with Auxiliary Information: An Explicit Matrix Factorization Perspective

2 code implementations11 Nov 2017 Junliang Guo, Linli Xu, Xunpeng Huang, Enhong Chen

In this paper, we take a matrix factorization perspective of network embedding, and incorporate structure, content and label information of the network simultaneously.

Link Prediction Network Embedding +1

Finding Theme Communities from Database Networks

no code implementations23 Sep 2017 Lingyang Chu, Zhefeng Wang, Jian Pei, Yanyan Zhang, Yu Yang, Enhong Chen

Given a database network where each vertex is associated with a transaction database, we are interested in finding theme communities.

Stack-based Multi-layer Attention for Transition-based Dependency Parsing

no code implementations EMNLP 2017 Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, Enhong Chen

Although sequence-to-sequence (seq2seq) network has achieved significant success in many NLP tasks such as machine translation and text summarization, simply applying this approach to transition-based dependency parsing cannot yield a comparable performance gain as in other state-of-the-art methods, such as stack-LSTM and head selection.

Language Modelling Machine Translation +3

Learning Better Word Embedding by Asymmetric Low-Rank Projection of Knowledge Graph

no code implementations19 May 2015 Fei Tian, Bin Gao, Enhong Chen, Tie-Yan Liu

Although these works have achieved certain success, they have neglected some important facts about knowledge graphs: (i) many relationships in knowledge graphs are \emph{many-to-one}, \emph{one-to-many} or even \emph{many-to-many}, rather than simply \emph{one-to-one}; (ii) most head entities and tail entities in knowledge graphs come from very different semantic spaces.

Knowledge Graphs Natural Language Processing

Agent Behavior Prediction and Its Generalization Analysis

no code implementations19 Apr 2014 Fei Tian, Haifang Li, Wei Chen, Tao Qin, Enhong Chen, Tie-Yan Liu

Then we prove a generalization bound for the machine learning algorithms on the behavior data generated by the new Markov chain, which depends on both the Markovian parameters and the covering number of the function class compounded by the loss function for behavior prediction and the behavior prediction model.

Cannot find the paper you are looking for? You can Submit a new open access paper.