no code implementations • 16 Mar 2020 • Matteo Figini, Hongxiang Lin, Godwin Ogbole, Felice D Arco, Stefano B. Blumberg, David W. Carmichael, Ryutaro Tanno, Enrico Kaden, Biobele J. Brown, Ikeoluwa Lagunju, Helen J. Cross, Delmiro Fernandez-Reyes, Daniel C. Alexander
1. 5T or 3T scanners are the current standard for clinical MRI, but low-field (<1T) scanners are still common in many lower- and middle-income countries for reasons of cost and robustness to power failures.
no code implementations • 15 Sep 2019 • Hongxiang Lin, Matteo Figini, Ryutaro Tanno, Stefano B. Blumberg, Enrico Kaden, Godwin Ogbole, Biobele J. Brown, Felice D'Arco, David W. Carmichael, Ikeoluwa Lagunju, Helen J. Cross, Delmiro Fernandez-Reyes, Daniel C. Alexander
In this paper we propose a probabilistic decimation simulator to improve robustness of model training.
no code implementations • 31 Jul 2019 • Ryutaro Tanno, Daniel Worrall, Enrico Kaden, Aurobrata Ghosh, Francesco Grussu, Alberto Bizzi, Stamatios N. Sotiropoulos, Antonio Criminisi, Daniel C. Alexander
Here we introduce methods to characterise different components of uncertainty in such problems and demonstrate the ideas using diffusion MRI super-resolution.
no code implementations • 1 May 2017 • Ryutaro Tanno, Daniel E. Worrall, Aurobrata Ghosh, Enrico Kaden, Stamatios N. Sotiropoulos, Antonio Criminisi, Daniel C. Alexander
In this work, we investigate the value of uncertainty modeling in 3D super-resolution with convolutional neural networks (CNNs).