no code implementations • 10 May 2022 • Youhui Guo, Yu Zhou, Xugong Qin, Enze Xie, Weiping Wang
Recent scene text detection methods are almost based on deep learning and data-driven.
1 code implementation • 26 Apr 2022 • Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Anima Anandkumar, Jiashi Feng, Jose M. Alvarez
Our study is motivated by the intriguing properties of the emerging visual grouping in Vision Transformers, which indicates that self-attention may promote robustness through improved mid-level representations.
Ranked #2 on
Domain Generalization
on ImageNet-C
(using extra training data)
no code implementations • 11 Apr 2022 • Enze Xie, Zhiding Yu, Daquan Zhou, Jonah Philion, Anima Anandkumar, Sanja Fidler, Ping Luo, Jose M. Alvarez
In this paper, we propose M$^2$BEV, a unified framework that jointly performs 3D object detection and map segmentation in the Birds Eye View~(BEV) space with multi-camera image inputs.
no code implementations • 4 Apr 2022 • Libo Sun, Wei Yin, Enze Xie, Zhengrong Li, Changming Sun, Chunhua Shen
The core of our framework is a monocular depth estimation module with a strong generalization capability for diverse scenes.
1 code implementation • 31 Mar 2022 • Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, Jifeng Dai
In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries.
Ranked #106 on
3D Object Detection
on nuScenes
no code implementations • 16 Mar 2022 • Chunmeng Liu, Enze Xie, Wenjia Wang, Wenhai Wang, Guangyao Li, Ping Luo
Although convolutional neural networks (CNNs) have achieved remarkable progress in weakly supervised semantic segmentation (WSSS), the effective receptive field of CNN is insufficient to capture global context information, leading to sub-optimal results.
1 code implementation • 3 Nov 2021 • Zhe Chen, Wenhai Wang, Enze Xie, Zhibo Yang, Tong Lu, Ping Luo
We propose an accurate and efficient scene text detection framework, termed FAST (i. e., faster arbitrarily-shaped text detector).
Ranked #2 on
Scene Text Detection
on SCUT-CTW1500
1 code implementation • CVPR 2022 • Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo, Tong Lu
Specifically, we supervise the attention modules in the mask decoder in a layer-wise manner.
Ranked #4 on
Panoptic Segmentation
on COCO test-dev
9 code implementations • ICLR 2022 • Shoufa Chen, Enze Xie, Chongjian Ge, Runjian Chen, Ding Liang, Ping Luo
We build a family of models which surpass existing MLPs and even state-of-the-art Transformer-based models, e. g., Swin Transformer, while using fewer parameters and FLOPs.
Ranked #15 on
Semantic Segmentation
on DensePASS
10 code implementations • 25 Jun 2021 • Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao
We hope this work will facilitate state-of-the-art Transformer researches in computer vision.
Ranked #46 on
Object Detection
on COCO minival
11 code implementations • NeurIPS 2021 • Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perception (MLP) decoders.
Ranked #1 on
Semantic Segmentation
on COCO-Stuff full
1 code implementation • 5 May 2021 • Enze Xie, Wenhai Wang, Mingyu Ding, Ruimao Zhang, Ping Luo
Extensive experiments demonstrate the effectiveness of both PolarMask and PolarMask++, which achieve competitive results on instance segmentation in the challenging COCO dataset with single-model and single-scale training and testing, as well as new state-of-the-art results on rotate text detection and cell segmentation.
Ranked #49 on
Instance Segmentation
on COCO test-dev
(using extra training data)
1 code implementation • 2 May 2021 • Wenhai Wang, Enze Xie, Xiang Li, Xuebo Liu, Ding Liang, Zhibo Yang, Tong Lu, Chunhua Shen
By systematically comparing with existing scene text representations, we show that our kernel representation can not only describe arbitrarily-shaped text but also well distinguish adjacent text.
1 code implementation • 24 Mar 2021 • Yang Cao, Zhengqiang Zhang, Enze Xie, Qibin Hou, Kai Zhao, Xiangui Luo, Jian Tuo
However, these methods usually encounter boundary-related imbalance problem, leading to limited generation capability.
1 code implementation • 22 Mar 2021 • Zhe Chen, Wenhai Wang, Enze Xie, Tong Lu, Ping Luo
(1) We divide input image into small patches and adopt TIN, successfully transferring image style with arbitrary high-resolution.
no code implementations • 8 Mar 2021 • Jian Ding, Enze Xie, Hang Xu, Chenhan Jiang, Zhenguo Li, Ping Luo, Gui-Song Xia
Unsupervised pre-training aims at learning transferable features that are beneficial for downstream tasks.
9 code implementations • ICCV 2021 • Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao
Unlike the recently-proposed Transformer model (e. g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks.
Ranked #5 on
Semantic Segmentation
on SynPASS
2 code implementations • ICCV 2021 • Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Peize Sun, Zhenguo Li, Ping Luo
Unlike most recent methods that focused on improving accuracy of image classification, we present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches to learn discriminative representations for object detection.
2 code implementations • 21 Jan 2021 • Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu, Ding Liang, Ping Luo
This work presents a new fine-grained transparent object segmentation dataset, termed Trans10K-v2, extending Trans10K-v1, the first large-scale transparent object segmentation dataset.
Ranked #3 on
Semantic Segmentation
on Trans10K
no code implementations • ICCV 2021 • Shoufa Chen, Peize Sun, Enze Xie, Chongjian Ge, Jiannan Wu, Lan Ma, Jiajun Shen, Ping Luo
WOO takes a unified video backbone to simultaneously extract features for actor location and action classification.
3 code implementations • 31 Dec 2020 • Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie, Zehuan Yuan, Changhu Wang, Ping Luo
In this work, we propose TransTrack, a simple but efficient scheme to solve the multiple object tracking problems.
Ranked #4 on
Multi-Object Tracking
on DanceTrack
1 code implementation • 10 Dec 2020 • Peize Sun, Yi Jiang, Enze Xie, Wenqi Shao, Zehuan Yuan, Changhu Wang, Ping Luo
We identify that classification cost in matching cost is the main ingredient: (1) previous detectors only consider location cost, (2) by additionally introducing classification cost, previous detectors immediately produce one-to-one prediction during inference.
1 code implementation • 26 Nov 2020 • Weijia Wu, Enze Xie, Ruimao Zhang, Wenhai Wang, Hong Zhou, Ping Luo
For example, without using polygon annotations, PSENet achieves an 80. 5% F-score on TotalText [3] (vs. 80. 9% of fully supervised counterpart), 31. 1% better than training directly with upright bounding box annotations, and saves 80%+ labeling costs.
1 code implementation • 3 Sep 2020 • Weijia Wu, Ning Lu, Enze Xie
To address the severe domain distribution mismatch, we propose a synthetic-to-real domain adaptation method for scene text detection, which transfers knowledge from synthetic data (source domain) to real data (target domain).
2 code implementations • ECCV 2020 • Wenhai Wang, Xuebo Liu, Xiaozhong Ji, Enze Xie, Ding Liang, Zhibo Yang, Tong Lu, Chunhua Shen, Ping Luo
Unlike previous works that merely employed visual features for text detection, this work proposes a novel text spotter, named Ambiguity Eliminating Text Spotter (AE TextSpotter), which learns both visual and linguistic features to significantly reduce ambiguity in text detection.
no code implementations • ECCV 2020 • Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen Qian, Wanli Ouyang, Ping Luo
The modules of HGG can be trained end-to-end with the keypoint detection network and is able to supervise the grouping process in a hierarchical manner.
Ranked #3 on
Keypoint Detection
on OCHuman
2 code implementations • ECCV 2020 • Wenjia Wang, Enze Xie, Xuebo Liu, Wenhai Wang, Ding Liang, Chunhua Shen, Xiang Bai
For example, it outperforms LapSRN by over 5% and 8%on the recognition accuracy of ASTER and CRNN.
1 code implementation • ECCV 2020 • Enze Xie, Wenjia Wang, Wenhai Wang, Mingyu Ding, Chunhua Shen, Ping Luo
To address this important problem, this work proposes a large-scale dataset for transparent object segmentation, named Trans10K, consisting of 10, 428 images of real scenarios with carefully manual annotations, which are 10 times larger than the existing datasets.
Ranked #4 on
Semantic Segmentation
on Trans10K
2 code implementations • 17 Mar 2020 • Yu Liu, Guanglu Song, Yuhang Zang, Yan Gao, Enze Xie, Junjie Yan, Chen Change Loy, Xiaogang Wang
Given such good instance bounding box, we further design a simple instance-level semantic segmentation pipeline and achieve the 1st place on the segmentation challenge.
2 code implementations • CVPR 2020 • Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Ding Liang, Chunhua Shen, Ping Luo
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off-the-shelf detection methods.
Ranked #63 on
Instance Segmentation
on COCO test-dev
1 code implementation • 16 Sep 2019 • Wenjia Wang, Enze Xie, Peize Sun, Wenhai Wang, Lixun Tian, Chunhua Shen, Ping Luo
Nonetheless, most of the previous methods may not work well in recognizing text with low resolution which is often seen in natural scene images.
6 code implementations • ICCV 2019 • Wenhai Wang, Enze Xie, Xiaoge Song, Yuhang Zang, Wenjia Wang, Tong Lu, Gang Yu, Chunhua Shen
Recently, some methods have been proposed to tackle arbitrary-shaped text detection, but they rarely take the speed of the entire pipeline into consideration, which may fall short in practical applications. In this paper, we propose an efficient and accurate arbitrary-shaped text detector, termed Pixel Aggregation Network (PAN), which is equipped with a low computational-cost segmentation head and a learnable post-processing.
Ranked #1 on
Scene Text Detection
on MSRA-TD500
13 code implementations • CVPR 2019 • Wenhai Wang, Enze Xie, Xiang Li, Wenbo Hou, Tong Lu, Gang Yu, Shuai Shao
Due to the fact that there are large geometrical margins among the minimal scale kernels, our method is effective to split the close text instances, making it easier to use segmentation-based methods to detect arbitrary-shaped text instances.
Ranked #10 on
Scene Text Detection
on SCUT-CTW1500
2 code implementations • 21 Nov 2018 • Enze Xie, Yuhang Zang, Shuai Shao, Gang Yu, Cong Yao, Guangyao Li
We propose a supervised pyramid context network (SPCNET) to precisely locate text regions while suppressing false positives.
Ranked #2 on
Scene Text Detection
on ICDAR 2013
no code implementations • 6 Nov 2018 • Feifan Xu, Fei He, Enze Xie, Liang Li
Ordered binary decision diagrams (OBDDs) are an efficient data structure for representing and manipulating Boolean formulas.