no code implementations • 3 Jan 2020 • Ephrem Wu
We describe a method for training accurate Transformer machine-translation models to run inference using 8-bit integer (INT8) hardware matrix multipliers, as opposed to the more costly single-precision floating-point (FP32) hardware.
4 code implementations • 6 Nov 2019 • Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou
Machine-learning (ML) hardware and software system demand is burgeoning.
no code implementations • 17 Sep 2019 • Xiaoyu Yu, Yuwei Wang, Jie Miao, Ephrem Wu, Heng Zhang, Yu Meng, Bo Zhang, Biao Min, Dewei Chen, Jianlin Gao
Intensive computation is entering data centers with multiple workloads of deep learning.