2 code implementations • 16 Oct 2023 • Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Venmugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gaurav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Rodriguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Micikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, Eric Chung
Narrow bit-width data formats are key to reducing the computational and storage costs of modern deep learning applications.
1 code implementation • 16 Feb 2023 • Bita Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mesmakhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, Lei Shao, Gaurav Kolhe, Dimitry Melts, Jasmine Klar, Renee L'Heureux, Matt Perry, Doug Burger, Eric Chung, Zhaoxia Deng, Sam Naghshineh, Jongsoo Park, Maxim Naumov
This paper introduces Block Data Representations (BDR), a framework for exploring and evaluating a wide spectrum of narrow-precision formats for deep learning.
no code implementations • 3 Dec 2020 • Siu Wun Cheung, Eric Chung, Yalchin Efendiev, Wing Tat Leung, Sai-Mang Pun
The iterative procedure starts with the construction of an energy minimizing snapshot space that can be used for approximating the solution of the model problem.
Numerical Analysis Numerical Analysis
no code implementations • NeurIPS 2020 • Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov , Anna Vinogradsky, Sarah Massengill , Lita Yang, Ray Bittner, Alessandro Forin, Haishan Zhu, Taesik Na, Prerak Patel, Shuai Che, Lok Chand Koppaka , Xia Song, Subhojit Som, Kaustav Das, Saurabh T, Steve Reinhardt , Sitaram Lanka, Eric Chung, Doug Burger
In this paper, we explore the limits of Microsoft Floating Point (MSFP), a new class of datatypes developed for production cloud-scale inferencing on custom hardware.
no code implementations • 17 Nov 2020 • Eric Chung, Yalchin Efendiev, Wing Tat Leung, Sai-Mang Pun, Zecheng Zhang
In this work, we propose a multi-agent actor-critic reinforcement learning (RL) algorithm to accelerate the multi-level Monte Carlo Markov Chain (MCMC) sampling algorithms.
Multi-agent Reinforcement Learning reinforcement-learning +2
no code implementations • 31 Aug 2020 • Boris Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun, Zecheng Zhang
This multiscale problem is interesting from a multiscale methodology point of view as the model problem has a hyperbolic multiscale term, and designing multiscale methods for hyperbolic equations is challenging.
Numerical Analysis Numerical Analysis 65M22, 65M60
no code implementations • 29 Mar 2019 • Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael. I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar
Machine learning (ML) techniques are enjoying rapidly increasing adoption.