Search Results for author: Erik Bekkers

Found 9 papers, 2 papers with code

Pullback Flow Matching on Data Manifolds

no code implementations6 Oct 2024 Friso de Kruiff, Erik Bekkers, Ozan Öktem, Carola-Bibiane Schönlieb, Willem Diepeveen

We propose Pullback Flow Matching (PFM), a novel framework for generative modeling on data manifolds.

Drug Discovery

ICML Topological Deep Learning Challenge 2024: Beyond the Graph Domain

no code implementations8 Sep 2024 Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane

This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).

Representation Learning

Can strong structural encoding reduce the importance of Message Passing?

no code implementations22 Oct 2023 Floor Eijkelboom, Erik Bekkers, Michael Bronstein, Francesco Di Giovanni

This suggests that the importance of message passing is limited when the model can construct strong structural encodings.

E(n) Equivariant Message Passing Simplicial Networks

no code implementations11 May 2023 Floor Eijkelboom, Rob Hesselink, Erik Bekkers

This paper presents $\mathrm{E}(n)$ Equivariant Message Passing Simplicial Networks (EMPSNs), a novel approach to learning on geometric graphs and point clouds that is equivariant to rotations, translations, and reflections.

PDE-based Group Equivariant Convolutional Neural Networks

1 code implementation24 Jan 2020 Bart Smets, Jim Portegies, Erik Bekkers, Remco Duits

We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems.

Data Augmentation Translation

Vesselness via Multiple Scale Orientation Scores

no code implementations20 Feb 2014 Julius Hannink, Remco Duits, Erik Bekkers

The multi-scale Frangi vesselness filter is an established tool in (retinal) vascular imaging.

A Multi-Orientation Analysis Approach to Retinal Vessel Tracking

no code implementations14 Dec 2012 Erik Bekkers, Remco Duits, Tos Berendschot, Bart ter Haar Romeny

This paper presents a method for retinal vasculature extraction based on biologically inspired multi-orientation analysis.

Cannot find the paper you are looking for? You can Submit a new open access paper.