no code implementations • 30 Mar 2022 • Philip Harris, Erik Katsavounidis, William Patrick McCormack, Dylan Rankin, Yongbin Feng, Abhijith Gandrakota, Christian Herwig, Burt Holzman, Kevin Pedro, Nhan Tran, Tingjun Yang, Jennifer Ngadiuba, Michael Coughlin, Scott Hauck, Shih-Chieh Hsu, Elham E Khoda, Deming Chen, Mark Neubauer, Javier Duarte, Georgia Karagiorgi, Mia Liu
Machine learning (ML) is becoming an increasingly important component of cutting-edge physics research, but its computational requirements present significant challenges.
no code implementations • 25 Oct 2021 • Allison McCarn Deiana, Nhan Tran, Joshua Agar, Michaela Blott, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Scott Hauck, Mia Liu, Mark S. Neubauer, Jennifer Ngadiuba, Seda Ogrenci-Memik, Maurizio Pierini, Thea Aarrestad, Steffen Bahr, Jurgen Becker, Anne-Sophie Berthold, Richard J. Bonventre, Tomas E. Muller Bravo, Markus Diefenthaler, Zhen Dong, Nick Fritzsche, Amir Gholami, Ekaterina Govorkova, Kyle J Hazelwood, Christian Herwig, Babar Khan, Sehoon Kim, Thomas Klijnsma, Yaling Liu, Kin Ho Lo, Tri Nguyen, Gianantonio Pezzullo, Seyedramin Rasoulinezhad, Ryan A. Rivera, Kate Scholberg, Justin Selig, Sougata Sen, Dmitri Strukov, William Tang, Savannah Thais, Kai Lukas Unger, Ricardo Vilalta, Belinavon Krosigk, Thomas K. Warburton, Maria Acosta Flechas, Anthony Aportela, Thomas Calvet, Leonardo Cristella, Daniel Diaz, Caterina Doglioni, Maria Domenica Galati, Elham E Khoda, Farah Fahim, Davide Giri, Benjamin Hawks, Duc Hoang, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Iris Johnson, Raghav Kansal, Ryan Kastner, Erik Katsavounidis, Jeffrey Krupa, Pan Li, Sandeep Madireddy, Ethan Marx, Patrick McCormack, Andres Meza, Jovan Mitrevski, Mohammed Attia Mohammed, Farouk Mokhtar, Eric Moreno, Srishti Nagu, Rohin Narayan, Noah Palladino, Zhiqiang Que, Sang Eon Park, Subramanian Ramamoorthy, Dylan Rankin, Simon Rothman, ASHISH SHARMA, Sioni Summers, Pietro Vischia, Jean-Roch Vlimant, Olivia Weng
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery.
no code implementations • 8 Feb 2021 • Ryan Magee, Deep Chatterjee, Leo P. Singer, Surabhi Sachdev, Manoj Kovalam, Geoffrey Mo, Stuart Anderson, Patrick Brady, Patrick Brockill, Kipp Cannon, Tito Dal Canton, Qi Chu, Patrick Clearwater, Alex Codoreanu, Marco Drago, Patrick Godwin, Shaon Ghosh, Giuseppe Greco, Chad Hanna, Shasvath J. Kapadia, Erik Katsavounidis, Victor Oloworaran, Alexander E. Pace, Fiona Panther, Anwarul Patwary, Roberto De Pietri, Brandon Piotrzkowski, Tanner Prestegard, Luca Rei, Anala K. Sreekumar, Marek J. Szczepańczyk, Vinaya Valsan, Aaron Viets, Madeline Wade, Linqing Wen, John Zweizig
We present results from an end-to-end mock data challenge that detects binary neutron star mergers and alerts partner facilities before merger.
High Energy Astrophysical Phenomena
no code implementations • 26 Nov 2019 • E. A. Huerta, Gabrielle Allen, Igor Andreoni, Javier M. Antelis, Etienne Bachelet, Bruce Berriman, Federica Bianco, Rahul Biswas, Matias Carrasco, Kyle Chard, Minsik Cho, Philip S. Cowperthwaite, Zachariah B. Etienne, Maya Fishbach, Francisco Förster, Daniel George, Tom Gibbs, Matthew Graham, William Gropp, Robert Gruendl, Anushri Gupta, Roland Haas, Sarah Habib, Elise Jennings, Margaret W. G. Johnson, Erik Katsavounidis, Daniel S. Katz, Asad Khan, Volodymyr Kindratenko, William T. C. Kramer, Xin Liu, Ashish Mahabal, Zsuzsa Marka, Kenton McHenry, Jonah Miller, Claudia Moreno, Mark Neubauer, Steve Oberlin, Alexander R. Olivas, Donald Petravick, Adam Rebei, Shawn Rosofsky, Milton Ruiz, Aaron Saxton, Bernard F. Schutz, Alex Schwing, Ed Seidel, Stuart L. Shapiro, Hongyu Shen, Yue Shen, Leo Singer, Brigitta M. Sipőcz, Lunan Sun, John Towns, Antonios Tsokaros, Wei Wei, Jack Wells, Timothy J. Williams, JinJun Xiong, Zhizhen Zhao
Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos.