no code implementations • 8 Feb 2023 • Jacob Walker, Eszter Vértes, Yazhe Li, Gabriel Dulac-Arnold, Ankesh Anand, Théophane Weber, Jessica B. Hamrick
Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.
no code implementations • 9 Nov 2022 • Jannik Kossen, Cătălina Cangea, Eszter Vértes, Andrew Jaegle, Viorica Patraucean, Ira Ktena, Nenad Tomasev, Danielle Belgrave
We introduce a challenging decision-making task that we call active acquisition for multimodal temporal data (A2MT).
no code implementations • 8 Dec 2021 • Angelos Filos, Eszter Vértes, Zita Marinho, Gregory Farquhar, Diana Borsa, Abram Friesen, Feryal Behbahani, Tom Schaul, André Barreto, Simon Osindero
Unlike prior work which estimates uncertainty by training an ensemble of many models and/or value functions, this approach requires only the single model and value function which are already being learned in most model-based reinforcement learning algorithms.
Model-based Reinforcement Learning Rolling Shutter Correction
no code implementations • ICLR 2022 • Ankesh Anand, Jacob Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser, Sherjil Ozair, Théophane Weber, Jessica B. Hamrick
One of the key promises of model-based reinforcement learning is the ability to generalize using an internal model of the world to make predictions in novel environments and tasks.
Ranked #1 on Meta-Learning on ML10 (Meta-test success rate (zero-shot) metric)