1 code implementation • 30 Oct 2023 • Niklas Smedemark-Margulies, Yunus Bicer, Elifnur Sunger, Tales Imbiriba, Eugene Tunik, Deniz Erdogmus, Mathew Yarossi, Robin Walters
New subjects only demonstrate the single component gestures and we seek to extrapolate from these to all possible single or combination gestures.
1 code implementation • 13 Sep 2023 • Yunus Bicer, Niklas Smedemark-Margulies, Basak Celik, Elifnur Sunger, Ryan Orendorff, Stephanie Naufel, Tales Imbiriba, Deniz Erdoğmuş, Eugene Tunik, Mathew Yarossi
We designed and tested a system for real-time control of a user interface by extracting surface electromyographic (sEMG) activity from eight electrodes in a wrist-band configuration.
no code implementations • 13 Sep 2023 • Niklas Smedemark-Margulies, Yunus Bicer, Elifnur Sunger, Stephanie Naufel, Tales Imbiriba, Eugene Tunik, Deniz Erdoğmuş, Mathew Yarossi
Main Results: We found that a problem transformation approach using a parallel model architecture in combination with a non-linear classifier, along with restricted synthetic data generation, shows promise in increasing the expressivity of sEMG-based gestures with a short calibration time.
no code implementations • 14 Feb 2020 • Md Navid Akbar, Mathew Yarossi, Marc Martinez-Gost, Marc A. Sommer, Moritz Dannhauer, Sumientra Rampersad, Dana Brooks, Eugene Tunik, Deniz Erdoğmuş
In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation.