no code implementations • 1 Aug 2024 • Eric Zimmermann, Eugene Vorontsov, Julian Viret, Adam Casson, Michal Zelechowski, George Shaikovski, Neil Tenenholtz, James Hall, David Klimstra, Razik Yousfi, Thomas Fuchs, Nicolo Fusi, SiQi Liu, Kristen Severson
Foundation models are rapidly being developed for computational pathology applications.
1 code implementation • 16 May 2024 • George Shaikovski, Adam Casson, Kristen Severson, Eric Zimmermann, Yi Kan Wang, Jeremy D. Kunz, Juan A. Retamero, Gerard Oakley, David Klimstra, Christopher Kanan, Matthew Hanna, Michal Zelechowski, Julian Viret, Neil Tenenholtz, James Hall, Nicolo Fusi, Razik Yousfi, Peter Hamilton, William A. Moye, Eugene Vorontsov, SiQi Liu, Thomas J. Fuchs
Foundation models in computational pathology promise to unlock the development of new clinical decision support systems and models for precision medicine.
no code implementations • 2 May 2024 • Eric Zimmermann, Neil Tenenholtz, James Hall, George Shaikovski, Michal Zelechowski, Adam Casson, Fausto Milletari, Julian Viret, Eugene Vorontsov, SiQi Liu, Kristen Severson
Self-supervised learning (SSL) has emerged as a key technique for training networks that can generalize well to diverse tasks without task-specific supervision.
no code implementations • 17 Sep 2023 • Malo de Boisredon, Eugene Vorontsov, William Trung Le, Samuel Kadoury
An image-to-image translation strategy between imaging modalities is used to produce annotated pseudo-target volumes and improve generalization to the unannotated target modality.
1 code implementation • 14 Sep 2023 • Eugene Vorontsov, Alican Bozkurt, Adam Casson, George Shaikovski, Michal Zelechowski, SiQi Liu, Kristen Severson, Eric Zimmermann, James Hall, Neil Tenenholtz, Nicolo Fusi, Philippe Mathieu, Alexander van Eck, Donghun Lee, Julian Viret, Eric Robert, Yi Kan Wang, Jeremy D. Kunz, Matthew C. H. Lee, Jan Bernhard, Ran A. Godrich, Gerard Oakley, Ewan Millar, Matthew Hanna, Juan Retamero, William A. Moye, Razik Yousfi, Christopher Kanan, David Klimstra, Brandon Rothrock, Thomas J. Fuchs
The use of artificial intelligence to enable precision medicine and decision support systems through the analysis of pathology images has the potential to revolutionize the diagnosis and treatment of cancer.
Ranked #1 on Breast Tumour Classification on PCam (Accuracy metric, using extra training data)
1 code implementation • 14 Dec 2022 • Malo Alefsen de Boisredon d'Assier, Eugene Vorontsov, Samuel Kadoury
Then, by teaching the model to convert images across modalities, we leverage available pixel-level annotations from the source modality to enable segmentation in the unannotated target modality.
no code implementations • 5 Jul 2021 • Eugene Vorontsov, Samuel Kadoury
In this work, we explore biased and unbiased errors artificially introduced to brain tumour annotations on MRI data.
1 code implementation • 10 Jun 2021 • Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, AnnetteKopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Goli Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, Henkjan Huisman, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbelaez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Namkug Kim, Ildoo Kim, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Segmentation is so far the most widely investigated medical image processing task, but the various segmentation challenges have typically been organized in isolation, such that algorithm development was driven by the need to tackle a single specific clinical problem.
1 code implementation • NeurIPS 2019 • Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov, Yoshua Bengio, Guillaume Lajoie
A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity matrices to be orthogonal or unitary.
no code implementations • 2 Apr 2019 • Eugene Vorontsov, Pavlo Molchanov, Christopher Beckham, Jan Kautz, Samuel Kadoury
Specifically, we propose a semi-supervised framework that employs unpaired image-to-image translation between two domains, presence vs. absence of cancer, as the unsupervised objective.
12 code implementations • 25 Feb 2019 • Amber L. Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc Gollub, Jennifer Golia-Pernicka, Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Eugene Vorontsov, Lena Maier-Hein, M. Jorge Cardoso
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization.
2 code implementations • 22 Jan 2019 • Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, Yoshua Bengio
Modelling long-term dependencies is a challenge for recurrent neural networks.
6 code implementations • 13 Jan 2019 • Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivantik, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yu, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018.
no code implementations • ICML 2017 • Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, Chris Pal
We find that hard constraints on orthogonality can negatively affect the speed of convergence and model performance.
no code implementations • 24 Jul 2017 • Eugene Vorontsov, An Tang, Chris Pal, Samuel Kadoury
We propose a model for the joint segmentation of the liver and liver lesions in computed tomography (CT) volumes.
no code implementations • 16 Feb 2017 • Michal Drozdzal, Gabriel Chartrand, Eugene Vorontsov, Lisa Di Jorio, An Tang, Adriana Romero, Yoshua Bengio, Chris Pal, Samuel Kadoury
Moreover, when applying our 2D pipeline on a challenging 3D MRI prostate segmentation challenge we reach results that are competitive even when compared to 3D methods.
1 code implementation • 31 Jan 2017 • Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, Chris Pal
We find that hard constraints on orthogonality can negatively affect the speed of convergence and model performance.
1 code implementation • 14 Aug 2016 • Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, Chris Pal
In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation.
no code implementations • 31 Aug 2015 • Samuel Kadoury, Eugene Vorontsov, An Tang
The early detection, diagnosis and monitoring of liver cancer progression can be achieved with the precise delineation of metastatic tumours.