no code implementations • 12 Feb 2025 • Mikhail Goncharov, Eugenia Soboleva, Mariia Donskova, Ivan Oseledets, Marina Munkhoeva, Maxim Panov
Accurate segmentation of all pathological findings in 3D medical images remains a significant challenge, as supervised models are limited to detecting only the few pathology classes annotated in existing datasets.
1 code implementation • 16 Sep 2024 • Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan Oseledets
We train our APE model on 8400 publicly available CT images of abdomen and chest regions.
no code implementations • 12 Jun 2024 • Anvar Kurmukov, Valeria Chernina, Regina Gareeva, Maria Dugova, Ekaterina Petrash, Olga Aleshina, Maxim Pisov, Boris Shirokikh, Valentin Samokhin, Vladislav Proskurov, Stanislav Shimovolos, Maria Basova, Mikhail Goncahrov, Eugenia Soboleva, Maria Donskova, Farukh Yaushev, Alexey Shevtsov, Alexey Zakharov, Talgat Saparov, Victor Gombolevskiy, Mikhail Belyaev
Previous studies have measured the time-saving effect of using a deep-learning-based aid (DLA) for CT interpretation.