1 code implementation • 25 Nov 2021 • Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, Lijuan Wang
Based on this model architecture, we show that video captioning can benefit significantly from more densely sampled video frames as opposed to previous successes with sparsely sampled video frames for video-and-language understanding tasks (e. g., video question answering).
no code implementations • 23 Nov 2021 • Zhengyuan Yang, Zhe Gan, JianFeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu, Lijuan Wang
In this paper, we propose UNICORN, a vision-language (VL) model that unifies text generation and bounding box prediction into a single architecture.
no code implementations • 25 Sep 2019 • Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, Jingjing Liu
Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding.
5 code implementations • ECCV 2020 • Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, Jingjing Liu
Different from previous work that applies joint random masking to both modalities, we use conditional masking on pre-training tasks (i. e., masked language/region modeling is conditioned on full observation of image/text).
Ranked #2 on
Visual Question Answering
on VCR (Q-A) test
no code implementations • 15 Nov 2017 • Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, Li Deng
We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems.
1 code implementation • ACL 2017 • Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, Li Deng
In this paper, we address this limitation by replacing symbolic queries with an induced "soft" posterior distribution over the KB that indicates which entities the user is interested in.
no code implementations • 17 Aug 2016 • Zachary C. Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, Li Deng
We present a new algorithm that significantly improves the efficiency of exploration for deep Q-learning agents in dialogue systems.