no code implementations • COLING 2022 • Elsbeth Turcan, David Wan, Faisal Ladhak, Petra Galuscakova, Sukanta Sen, Svetlana Tchistiakova, Weijia Xu, Marine Carpuat, Kenneth Heafield, Douglas Oard, Kathleen McKeown
Query-focused summaries of foreign-language, retrieved documents can help a user understand whether a document is actually relevant to the query term.
1 code implementation • 28 May 2023 • Griffin Adams, Alexander R. Fabbri, Faisal Ladhak, Kathleen McKeown, Noémie Elhadad
Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1. 05 ROUGE-2 F1 points.
1 code implementation • 30 Mar 2023 • Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, Tatsunori Hashimoto
Language models (LMs) are increasingly being used in open-ended contexts, where the opinions reflected by LMs in response to subjective queries can have a profound impact, both on user satisfaction, as well as shaping the views of society at large.
1 code implementation • 31 Jan 2023 • Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, Tatsunori B. Hashimoto
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
no code implementations • 21 Dec 2022 • Faisal Ladhak, Esin Durmus, Tatsunori Hashimoto
We show that existing approaches for error tracing, such as gradient-based influence measures, do not perform reliably for detecting faithfulness errors in summarization.
1 code implementation • 19 Dec 2022 • Mina Lee, Megha Srivastava, Amelia Hardy, John Thickstun, Esin Durmus, Ashwin Paranjape, Ines Gerard-Ursin, Xiang Lisa Li, Faisal Ladhak, Frieda Rong, Rose E. Wang, Minae Kwon, Joon Sung Park, Hancheng Cao, Tony Lee, Rishi Bommasani, Michael Bernstein, Percy Liang
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction.
1 code implementation • 16 Nov 2022 • Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda
We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models.
no code implementations • COLING (CreativeSumm) 2022 • Divyansh Agarwal, Alexander R. Fabbri, Simeng Han, Wojciech Kryściński, Faisal Ladhak, Bryan Li, Kathleen McKeown, Dragomir Radev, Tianyi Zhang, Sam Wiseman
We detail the process of curating these datasets for the task, as well as the metrics used for the evaluation of the submissions.
no code implementations • 9 Nov 2022 • Hardy Hardy, Miguel Ballesteros, Faisal Ladhak, Muhammad Khalifa, Vittorio Castelli, Kathleen McKeown
Summarizing novel chapters is a difficult task due to the input length and the fact that sentences that appear in the desired summaries draw content from multiple places throughout the chapter.
no code implementations • 7 Nov 2022 • Federico Bianchi, Pratyusha Kalluri, Esin Durmus, Faisal Ladhak, Myra Cheng, Debora Nozza, Tatsunori Hashimoto, Dan Jurafsky, James Zou, Aylin Caliskan
Machine learning models are now able to convert user-written text descriptions into naturalistic images.
no code implementations • 22 Jun 2022 • Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Hiroaki Hayashi, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza, Shailza Jolly, Simon Mille, Tahmid Hasan, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou
This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims.
no code implementations • 25 May 2022 • Badr AlKhamissi, Faisal Ladhak, Srini Iyer, Ves Stoyanov, Zornitsa Kozareva, Xian Li, Pascale Fung, Lambert Mathias, Asli Celikyilmaz, Mona Diab
Hate speech detection is complex; it relies on commonsense reasoning, knowledge of stereotypes, and an understanding of social nuance that differs from one culture to the next.
Cultural Vocal Bursts Intensity Prediction
Few-Shot Learning
+1
1 code implementation • ACL 2022 • Esin Durmus, Faisal Ladhak, Tatsunori Hashimoto
Model-based, reference-free evaluation metrics have been proposed as a fast and cost-effective approach to evaluate Natural Language Generation (NLG) systems.
1 code implementation • ACL 2022 • Faisal Ladhak, Esin Durmus, He He, Claire Cardie, Kathleen McKeown
Despite recent progress in abstractive summarization, systems still suffer from faithfulness errors.
3 code implementations • 16 Aug 2021 • Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, aditi raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, Percy Liang
AI is undergoing a paradigm shift with the rise of models (e. g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks.
no code implementations • EACL 2021 • David Wan, Chris Kedzie, Faisal Ladhak, Elsbeth Turcan, Petra Galuščáková, Elena Zotkina, Zhengping Jiang, Peter Bell, Kathleen McKeown
Typical ASR systems segment the input audio into utterances using purely acoustic information, which may not resemble the sentence-like units that are expected by conventional machine translation (MT) systems for Spoken Language Translation.
no code implementations • ACL (GEM) 2021 • Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, Aremu Anuoluwapo, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D. Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek, Chris Emezue, Varun Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly Nikolaev, Rubungo Andre Niyongabo, Salomey Osei, Ankur Parikh, Laura Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank Santhanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola, Jiawei Zhou
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics.
Ranked #1 on
Extreme Summarization
on GEM-XSum
Abstractive Text Summarization
Cross-Lingual Abstractive Summarization
+5
no code implementations • EMNLP 2020 • Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan, Jie Ma, Faisal Ladhak, Yaser Al-Onaizan
Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success.
1 code implementation • WMT (EMNLP) 2020 • David Wan, Chris Kedzie, Faisal Ladhak, Marine Carpuat, Kathleen McKeown
In this paper, we present both autoregressive and non-autoregressive models for lexically constrained APE, demonstrating that our approach enables preservation of 95% of the terminologies and also improves translation quality on English-German benchmarks.
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Faisal Ladhak, Esin Durmus, Claire Cardie, Kathleen McKeown
As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset.
Abstractive Text Summarization
Cross-Lingual Abstractive Summarization
+2
1 code implementation • ACL 2020 • Faisal Ladhak, Bryan Li, Yaser Al-Onaizan, Kathleen McKeown
We present a new summarization task, generating summaries of novel chapters using summary/chapter pairs from online study guides.
no code implementations • IJCNLP 2019 • Esin Durmus, Faisal Ladhak, Claire Cardie
Research in the social sciences and psychology has shown that the persuasiveness of an argument depends not only the language employed, but also on attributes of the source/communicator, the audience, and the appropriateness and strength of the argument's claims given the pragmatic and discourse context of the argument.
no code implementations • ACL 2019 • Esin Durmus, Faisal Ladhak, Claire Cardie
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context.
no code implementations • WS 2018 • Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhardwaj, Shaonan Zhang, Jason Sun
We incorporate an explicit neural interlingua into a multilingual encoder-decoder neural machine translation (NMT) architecture.