1 code implementation • 2 Nov 2024 • Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, Sahar Dastani Oghani, Milad Cheraghalikhani, David Osowiech, Farzad Beizaee, Gustavo adolfo. vargas-hakim, Ismail Ben Ayed, Christian Desrosiers
Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data.
1 code implementation • 22 Jul 2024 • Farzad Beizaee, Gregory A. Lodygensky, Chris L. Adamson, Deanne K. Thompso, Jeanie L. Y. Cheon, Alicia J. Spittl. Peter J. Anderso, Christian Desrosier, Jose Dolz
Initially, a normalizing flow network is trained to capture the distribution characteristics of the source domain.
1 code implementation • 19 Jun 2024 • David Osowiechi, Mehrdad Noori, Gustavo Adolfo Vargas Hakim, Moslem Yazdanpanah, Ali Bahri, Milad Cheraghalikhani, Sahar Dastani, Farzad Beizaee, Ismail Ben Ayed, Christian Desrosiers
In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM.
no code implementations • 20 May 2024 • Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, Milad Cheraghalikhani, Gustavo Adolfo Vargas Hakim, David Osowiechi, Farzad Beizaee, Ismail Ben Ayed, Christian Desrosiers
We introduce a pioneering approach to self-supervised learning for point clouds, employing a geometrically informed mask selection strategy called GeoMask3D (GM3D) to boost the efficiency of Masked Auto Encoders (MAE).
1 code implementation • 27 Jan 2023 • Farzad Beizaee, Christian Desrosiers, Gregory A. Lodygensky, Jose Dolz
In this paper, we propose an unsupervised framework based on normalizing flows that harmonizes MR images to mimic the distribution of the source domain.