no code implementations • Findings (ACL) 2022 • ZeFeng Cai, LinLin Wang, Gerard de Melo, Fei Sun, Liang He
Generating explanations for recommender systems is essential for improving their transparency, as users often wish to understand the reason for receiving a specified recommendation.
no code implementations • 22 Nov 2024 • Kaike Zhang, Yunfan Wu, Yougang Lyu, Du Su, Yingqiang Ge, Shuchang Liu, Qi Cao, Zhaochun Ren, Fei Sun
Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS).
1 code implementation • 20 Nov 2024 • Yige Yuan, Bingbing Xu, Hexiang Tan, Fei Sun, Teng Xiao, Wei Li, HuaWei Shen, Xueqi Cheng
Confidence calibration in LLMs, i. e., aligning their self-assessed confidence with the actual accuracy of their responses, enabling them to self-evaluate the correctness of their outputs.
1 code implementation • 8 Nov 2024 • Wenyue Hua, Ollie Liu, Lingyao Li, Alfonso Amayuelas, Julie Chen, Lucas Jiang, Mingyu Jin, Lizhou Fan, Fei Sun, William Wang, Xintong Wang, Yongfeng Zhang
This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory.
no code implementations • 1 Nov 2024 • Quan Zhou, Changhua Pei, Fei Sun, Jing Han, Zhengwei Gao, Dan Pei, Haiming Zhang, Gaogang Xie, Jianhui Li
Due to the common occurrence of noise, i. e., local peaks and drops in time series, existing black-box learning methods can easily learn these unintended patterns, significantly affecting anomaly detection performance.
1 code implementation • 30 Oct 2024 • Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, HuaWei Shen, Xueqi Cheng
Adversarial Collaborative Filtering (ACF), which typically applies adversarial perturbations at user and item embeddings through adversarial training, is widely recognized as an effective strategy for enhancing the robustness of Collaborative Filtering (CF) recommender systems against poisoning attacks.
1 code implementation • 21 Oct 2024 • Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, Xue Lin
To deal with this problem, post-training pruning methods are proposed to prune LLMs in one-shot without retraining.
no code implementations • 12 Oct 2024 • Yige Yuan, Bingbing Xu, Teng Xiao, Liang Hou, Fei Sun, HuaWei Shen, Xueqi Cheng
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
1 code implementation • 26 Sep 2024 • Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, HuaWei Shen, Xueqi Cheng
Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems.
1 code implementation • 20 Aug 2024 • Yunfan Wu, Qi Cao, Shuchang Tao, Kaike Zhang, Fei Sun, HuaWei Shen
Recent studies have demonstrated the vulnerability of recommender systems to data poisoning attacks, where adversaries inject carefully crafted fake user interactions into the training data of recommenders to promote target items.
1 code implementation • 31 Jul 2024 • Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma
This paper presents a new set of foundation models, called Llama 3.
Ranked #2 on Multi-task Language Understanding on MMLU
1 code implementation • 17 Jun 2024 • Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Du Su, Dawei Yin, HuaWei Shen
Despite significant progress in model editing methods, their application in real-world scenarios remains challenging as they often cause large language models (LLMs) to collapse.
no code implementations • 5 May 2024 • Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito, Jeff Johnson, Gu-Yeon Wei, David Brooks, Carole-Jean Wu
Training large-scale machine learning models poses distinct system challenges, given both the size and complexity of today's workloads.
1 code implementation • 26 Apr 2024 • Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao, HuaWei Shen, Bolin Ding
Specifically, the order-preserving reward incentivizes the model to verbalize greater confidence for responses of higher quality to align the order of confidence and quality.
1 code implementation • 16 Feb 2024 • Jiajun Tan, Fei Sun, Ruichen Qiu, Du Su, HuaWei Shen
As concerns over data privacy intensify, unlearning in Graph Neural Networks (GNNs) has emerged as a prominent research frontier in academia.
1 code implementation • 15 Feb 2024 • Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin, Xueqi Cheng
In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
no code implementations • 31 Jan 2024 • Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, HuaWei Shen, Xueqi Cheng
Traditional defense strategies predominantly depend on predefined assumptions or rules extracted from specific known attacks, limiting their generalizability to unknown attack types.
1 code implementation • 22 Jan 2024 • Hexiang Tan, Fei Sun, Wanli Yang, Yuanzhuo Wang, Qi Cao, Xueqi Cheng
While auxiliary information has become a key to enhancing Large Language Models (LLMs), relatively little is known about how LLMs merge these contexts, specifically contexts generated by LLMs and those retrieved from external sources.
no code implementations • 22 Dec 2023 • Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito, Jeff Johnson, Gu-Yeon Wei, David Brooks, Carole-Jean Wu
As the development of large-scale Generative AI models evolve beyond text (1D) generation to include image (2D) and video (3D) generation, processing spatial and temporal information presents unique challenges to quality, performance, and efficiency.
1 code implementation • CVPR 2024 • Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiaoliang Dai, Dilin Wang, Fei Sun, Forrest Iandola, Raghuraman Krishnamoorthi, Vikas Chandra
On segment anything task such as zero-shot instance segmentation, our EfficientSAMs with SAMI-pretrained lightweight image encoders perform favorably with a significant gain (e. g., ~4 AP on COCO/LVIS) over other fast SAM models.
Ranked #3 on Zero-Shot Instance Segmentation on LVIS v1.0 val
1 code implementation • CVPR 2024 • Yige Yuan, Bingbing Xu, Liang Hou, Fei Sun, HuaWei Shen, Xueqi Cheng
To address this, we propose a novel energy-based perspective, enhancing the model's perception of target data distributions without requiring access to training data or processes.
no code implementations • 5 Sep 2023 • Kaike Zhang, Qi Cao, Fei Sun, Yunfan Wu, Shuchang Tao, HuaWei Shen, Xueqi Cheng
With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload.
no code implementations • 11 Aug 2023 • Yue Feng, Shuchang Liu, Zhenghai Xue, Qingpeng Cai, Lantao Hu, Peng Jiang, Kun Gai, Fei Sun
For response generation, we utilize the generation ability of LLM as a language interface to better interact with users.
1 code implementation • 8 Jun 2023 • Ganesh Jawahar, Haichuan Yang, Yunyang Xiong, Zechun Liu, Dilin Wang, Fei Sun, Meng Li, Aasish Pappu, Barlas Oguz, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Raghuraman Krishnamoorthi, Vikas Chandra
In NLP tasks like machine translation and pre-trained language modeling, there is a significant performance gap between supernet and training from scratch for the same model architecture, necessitating retraining post optimal architecture identification.
1 code implementation • 25 May 2023 • Yige Yuan, Bingbing Xu, Bo Lin, Liang Hou, Fei Sun, HuaWei Shen, Xueqi Cheng
The generalization of neural networks is a central challenge in machine learning, especially concerning the performance under distributions that differ from training ones.
1 code implementation • 7 Apr 2023 • Xuhui Jiang, Chengjin Xu, Yinghan Shen, Yuanzhuo Wang, Fenglong Su, Fei Sun, Zixuan Li, Zhichao Shi, Jian Guo, HuaWei Shen
Firstly, we address the oversimplified heterogeneity settings of current datasets and propose two new HHKG datasets that closely mimic practical EA scenarios.
no code implementations • 28 Oct 2022 • Sihao Yu, Fei Sun, Jiafeng Guo, Ruqing Zhang, Xueqi Cheng
However, such a strategy typically leads to a loss in model performance, which poses the challenge that increasing the unlearning efficiency while maintaining acceptable performance.
1 code implementation • 11 Aug 2022 • Zejiang Hou, Fei Sun, Yen-Kuang Chen, Yuan Xie, Sun-Yuan Kung
When the masked autoencoder is pretrained and finetuned on ImageNet-1K dataset with an input resolution of 224x224, MILAN achieves a top-1 accuracy of 85. 4% on ViT-Base, surpassing previous state-of-the-arts by 1%.
1 code implementation • 3 Aug 2022 • Shuchang Tao, Qi Cao, HuaWei Shen, Yunfan Wu, Liang Hou, Fei Sun, Xueqi Cheng
In this paper, we first propose and define camouflage as distribution similarity between ego networks of injected nodes and normal nodes.
1 code implementation • 24 Jun 2022 • Zihan Wang, Na Huang, Fei Sun, Pengjie Ren, Zhumin Chen, Hengliang Luo, Maarten de Rijke, Zhaochun Ren
To address the above limitations, we propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components: (1) a difference vector generator, (2) a disentangled encoder, (3) a weight estimator, and (4) an attack model.
no code implementations • 1 Apr 2022 • Ziqian Chen, Fei Sun, Yifan Tang, Haokun Chen, Jinyang Gao, Bolin Ding
Then we study users' privacy decision making under different data disclosure mechanisms and recommendation models, and how their data disclosure decisions affect the recommender system's performance.
1 code implementation • CVPR 2022 • Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, Sun-Yuan Kung
However, conventional pruning methods have limitations in that: they are restricted to pruning process only, and they require a fully pre-trained large model.
1 code implementation • 14 Feb 2022 • Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang, Ruiming Tang
As the final stage of the multi-stage recommender system (MRS), re-ranking directly affects user experience and satisfaction by rearranging the input ranking lists, and thereby plays a critical role in MRS. With the advances in deep learning, neural re-ranking has become a trending topic and been widely applied in industrial applications.
1 code implementation • 18 Jan 2022 • Chong Chen, Fei Sun, Min Zhang, Bolin Ding
From the perspective of utility, if a system's utility is damaged by some bad data, the system needs to forget these data to regain utility.
no code implementations • 21 Dec 2021 • Minghai Qin, Tianyun Zhang, Fei Sun, Yen-Kuang Chen, Makan Fardad, Yanzhi Wang, Yuan Xie
Deep neural networks (DNNs) have shown to provide superb performance in many real life applications, but their large computation cost and storage requirement have prevented them from being deployed to many edge and internet-of-things (IoT) devices.
no code implementations • 20 Dec 2021 • Fei Sun, Minghai Qin, Tianyun Zhang, Xiaolong Ma, Haoran Li, Junwen Luo, Zihao Zhao, Yen-Kuang Chen, Yuan Xie
Our experiments show that GS patterns consistently make better trade-offs between accuracy and computation efficiency compared to conventional structured sparse patterns.
no code implementations • 5 Sep 2021 • Yingqiang Ge, Shuchang Liu, Zelong Li, Shuyuan Xu, Shijie Geng, Yunqi Li, Juntao Tan, Fei Sun, Yongfeng Zhang
While recent years have witnessed the emergence of various explainable methods in machine learning, to what degree the explanations really represent the reasoning process behind the model prediction -- namely, the faithfulness of explanation -- is still an open problem.
1 code implementation • Findings (EMNLP) 2021 • Yuexiang Xie, Fei Sun, Yang Deng, Yaliang Li, Bolin Ding
However, existing metrics either neglect the intrinsic cause of the factual inconsistency or rely on auxiliary tasks, leading to an unsatisfied correlation with human judgments or increasing the inconvenience of usage in practice.
1 code implementation • ICLR 2022 • Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang Chen, Rong Jin, Yuan Xie
It addresses the shortcomings of the previous works by repeatedly growing a subset of layers to dense and then pruning them back to sparse after some training.
no code implementations • 28 May 2021 • Xu Xie, Zhaoyang Liu, Shiwen Wu, Fei Sun, Cihang Liu, Jiawei Chen, Jinyang Gao, Bin Cui, Bolin Ding
It is based on the idea that similar users not only have a similar taste on items, but also have similar treatment effect under recommendations.
no code implementations • 20 May 2021 • Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, Wai Lam
However, existing methods mainly target at solving one or two of these three decision-making problems in CRS with separated conversation and recommendation components, which restrict the scalability and generality of CRS and fall short of preserving a stable training procedure.
no code implementations • 2 Apr 2021 • Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, Wenwu Ou
Specifically, we first design the evaluator, which applies Bi-LSTM and self-attention mechanism to model the contextual information in the labeled final ranking list and predict the interaction probability of each item more precisely.
1 code implementation • 8 Mar 2021 • Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, Xueqi Cheng
We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development.
no code implementations • 28 Feb 2021 • Xu Xie, Fei Sun, Xiaoyong Yang, Zhao Yang, Jinyang Gao, Wenwu Ou, Bin Cui
On the one hand, it utilizes UI relations and user neighborhood to capture both global and local information.
no code implementations • 26 Feb 2021 • Shuchang Liu, Fei Sun, Yingqiang Ge, Changhua Pei, Yongfeng Zhang
Slate recommendation generates a list of items as a whole instead of ranking each item individually, so as to better model the intra-list positional biases and item relations.
no code implementations • 24 Feb 2021 • Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, Wenwu Ou
Afterwards, for the candidate list set, the PRank stage provides a unified permutation-wise ranking criterion named LR metric, which is calculated by the rating scores of elaborately designed permutation-wise model DPWN.
no code implementations • 5 Feb 2021 • Jinbo Song, Chao Chang, Fei Sun, Zhenyang Chen, Guoyong Hu, Peng Jiang
We present Graph Attention Collaborative Similarity Embedding (GACSE), a new recommendation framework that exploits collaborative information in the user-item bipartite graph for representation learning.
1 code implementation • 10 Jan 2021 • Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao, Changhua Pei, Fei Sun, Junfeng Ge, Wenwu Ou, Yongfeng Zhang
We focus on the fairness of exposure of items in different groups, while the division of the groups is based on item popularity, which dynamically changes over time in the recommendation process.
no code implementations • 31 Dec 2020 • Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, Hao Ma
Pre-trained language models have proven their unique powers in capturing implicit language features.
Ranked #5 on Question Answering on Quora Question Pairs
1 code implementation • 4 Nov 2020 • Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, Bin Cui
With the explosive growth of online information, recommender systems play a key role to alleviate such information overload.
1 code implementation • 27 Oct 2020 • Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, Bin Cui
Sequential recommendation methods play a crucial role in modern recommender systems because of their ability to capture a user's dynamic interest from her/his historical interactions.
1 code implementation • 24 Oct 2020 • Fuyu Lv, Mengxue Li, Tonglei Guo, Changlong Yu, Fei Sun, Taiwei Jin, Wilfred Ng
The offline experimental results based on real-world E-commerce data demonstrate the effectiveness and verify the importance of unclicked items in sequential recommendation.
no code implementations • 23 Oct 2020 • Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, Peng Jiang
To modeling the implicit correlations of neighbors in graph embedding aggregating, we propose a Neighbor-Aware Graph Attention Network for recommendation task, termed NGAT4Rec.
no code implementations • 13 Aug 2020 • Yufei Feng, Fuyu Lv, Binbin Hu, Fei Sun, Kun Kuang, Yang Liu, Qingwen Liu, Wenwu Ou
In this paper, we propose a new framework named Multiplex Target-Behavior Relation enhanced Network (MTBRN) to leverage multiplex relations between user behaviors and target item to enhance CTR prediction.
no code implementations • 13 Aug 2020 • Changying Hao, Liang Pang, Yanyan Lan, Fei Sun, Jiafeng Guo, Xue-Qi Cheng
To tackle this problem, we propose a Ranking Enhanced Dialogue generation framework in this paper.
1 code implementation • 6 Jul 2020 • Yingqiang Ge, Shuyuan Xu, Shuchang Liu, Zuohui Fu, Fei Sun, Yongfeng Zhang
Before making purchases on e-commerce websites, most consumers tend to rely on rating scores and review information to make purchase decisions.
1 code implementation • 6 Jul 2020 • Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, Yongfeng Zhang
Current research on recommender systems mostly focuses on matching users with proper items based on user interests.
no code implementations • 24 Apr 2020 • Fei Sun, Minghai Qin, Tianyun Zhang, Liu Liu, Yen-Kuang Chen, Yuan Xie
We show that for practically complicated problems, it is more beneficial to search large and sparse models in the weight dominated region.
no code implementations • 12 Apr 2020 • Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Minghai Qin, Fei Sun, Yen-Kuang Chen, Caiwen Ding, Makan Fardad, Yanzhi Wang
To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and generally fall into two categories, i. e., static regularization-based pruning and dynamic regularization-based pruning.
no code implementations • 19 Mar 2020 • Fei Sun, Yichuan Dong
Complex risk is a critical factor for both intelligent systems and risk management.
no code implementations • 12 Mar 2020 • Zhize Wu, Thomas Weise, Le Zou, Fei Sun, Ming Tan
Differing from the previous studies, we propose a new method called Denoising Autoencoder with Temporal and Categorical Constraints (DAE_CTC)} to study the skeletal representation in a view of skeleton reconstruction.
4 code implementations • CVPR 2020 • Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, Fengbo Ren
Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size.
4 code implementations • 6 Nov 2019 • Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou
Machine-learning (ML) hardware and software system demand is burgeoning.
2 code implementations • 1 Sep 2019 • Fuyu Lv, Taiwei Jin, Changlong Yu, Fei Sun, Quan Lin, Keping Yang, Wilfred Ng
In this paper, we propose a new sequential deep matching (SDM) model to capture users' dynamic preferences by combining short-term sessions and long-term behaviors.
no code implementations • 11 Jul 2019 • Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong Yang, Changhua Pei, Fei Sun, Jian Wu, Hanxiao Sun, Wenwu Ou
To guarantee the consistency of off-line training and on-line serving, we usually utilize the same features that are both available.
1 code implementation • ACL 2019 • Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, Jie zhou
To properly train the utterance rewriter, we collect a new dataset with human annotations and introduce a Transformer-based utterance rewriting architecture using the pointer network.
1 code implementation • 17 May 2019 • Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu
This paper targets to a novel but practical recommendation problem named exact-K recommendation.
7 code implementations • 16 May 2019 • Yufei Feng, Fuyu Lv, Weichen Shen, Menghan Wang, Fei Sun, Yu Zhu, Keping Yang
Easy-to-use, Modular and Extendible package of deep-learning based CTR models. DeepFM, DeepInterestNetwork(DIN), DeepInterestEvolutionNetwork(DIEN), DeepCrossNetwork(DCN), AttentionalFactorizationMachine(AFM), Neural Factorization Machine(NFM), AutoInt, Deep Session Interest Network(DSIN)
1 code implementation • 6 May 2019 • Wen Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng Guo, Fei Sun, Chao Li, Andreas Pfadler, Huan Zhao, Binqiang Zhao
In particular, there exist two requirements for fashion outfit recommendation: the Compatibility of the generated fashion outfits, and the Personalization in the recommendation process.
no code implementations • 3 May 2019 • Xiong Deng, Chao Chen, Deyang Chen, Xiangbin Cai, Xiaozhe Yin, Chao Xu, Fei Sun, Caiwen Li, Yan Li, Han Xu, Mao Ye, Guo Tian, Zhen Fan, Zhipeng Hou, Minghui Qin, Yu Chen, Zhenlin Luo, Xubing Lu, Guofu Zhou, Lang Chen, Ning Wang, Ye Zhu, Xingsen Gao, Jun-Ming Liu
The limitation of commercially available single-crystal substrates and the lack of continuous strain tunability preclude the ability to take full advantage of strain engineering for further exploring novel properties and exhaustively studying fundamental physics in complex oxides.
Materials Science
no code implementations • 17 Apr 2019 • Tianshu Lyu, Fei Sun, Peng Jiang, Wenwu Ou, Yan Zhang
Node ID is not generalizable and, thus, the existing methods have to pay great effort in cold-start problem.
no code implementations • 16 Apr 2019 • Xiaochuan Deng, Fei Sun
As regulators pay more attentions to losses rather than gains, we are able to derive a new class of risk statistics, named regulator-based risk statistics with scenario analysis in this paper.
no code implementations • 16 Apr 2019 • Xiaochuan Deng, Fei Sun
Risk statistic is a critical factor not only for risk analysis but also for financial application.
no code implementations • 16 Apr 2019 • Fei Sun, Xiaozhi Fan, Weitao Liu
The time value of money is a critical factor not only in risk analysis, but also in insurance and financial applications.
no code implementations • 15 Apr 2019 • Sergei Alyamkin, Matthew Ardi, Alexander C. Berg, Achille Brighton, Bo Chen, Yiran Chen, Hsin-Pai Cheng, Zichen Fan, Chen Feng, Bo Fu, Kent Gauen, Abhinav Goel, Alexander Goncharenko, Xuyang Guo, Soonhoi Ha, Andrew Howard, Xiao Hu, Yuanjun Huang, Donghyun Kang, Jaeyoun Kim, Jong Gook Ko, Alexander Kondratyev, Junhyeok Lee, Seungjae Lee, Suwoong Lee, Zichao Li, Zhiyu Liang, Juzheng Liu, Xin Liu, Yang Lu, Yung-Hsiang Lu, Deeptanshu Malik, Hong Hanh Nguyen, Eunbyung Park, Denis Repin, Liang Shen, Tao Sheng, Fei Sun, David Svitov, George K. Thiruvathukal, Baiwu Zhang, Jingchi Zhang, Xiaopeng Zhang, Shaojie Zhuo
In addition to mobile phones, many autonomous systems rely on visual data for making decisions and some of these systems have limited energy (such as unmanned aerial vehicles also called drones and mobile robots).
1 code implementation • 15 Apr 2019 • Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Wenwu Ou
Ranking is a core task in recommender systems, which aims at providing an ordered list of items to users.
8 code implementations • 14 Apr 2019 • Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, Peng Jiang
To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context.
Ranked #3 on Recommendation Systems on MovieLens 1M (HR@10 (full corpus) metric)
no code implementations • 3 Feb 2019 • Changhua Pei, Xinru Yang, Qing Cui, Xiao Lin, Fei Sun, Peng Jiang, Wenwu Ou, Yongfeng Zhang
Existing recommendation algorithms mostly focus on optimizing traditional recommendation measures, such as the accuracy of rating prediction in terms of RMSE or the quality of top-$k$ recommendation lists in terms of precision, recall, MAP, etc.
1 code implementation • CVPR 2019 • Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, Niraj K. Jha
We formulate platform-aware NN architecture search in an optimization framework and propose a novel algorithm to search for optimal architectures aided by efficient accuracy and resource (latency and/or energy) predictors.
5 code implementations • CVPR 2019 • Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, Kurt Keutzer
Due to this, previous neural architecture search (NAS) methods are computationally expensive.
Ranked #946 on Image Classification on ImageNet
no code implementations • 3 Oct 2018 • Sergei Alyamkin, Matthew Ardi, Achille Brighton, Alexander C. Berg, Yiran Chen, Hsin-Pai Cheng, Bo Chen, Zichen Fan, Chen Feng, Bo Fu, Kent Gauen, Jongkook Go, Alexander Goncharenko, Xuyang Guo, Hong Hanh Nguyen, Andrew Howard, Yuanjun Huang, Donghyun Kang, Jaeyoun Kim, Alexander Kondratyev, Seungjae Lee, Suwoong Lee, Junhyeok Lee, Zhiyu Liang, Xin Liu, Juzheng Liu, Zichao Li, Yang Lu, Yung-Hsiang Lu, Deeptanshu Malik, Eunbyung Park, Denis Repin, Tao Sheng, Liang Shen, Fei Sun, David Svitov, George K. Thiruvathukal, Baiwu Zhang, Jingchi Zhang, Xiaopeng Zhang, Shaojie Zhuo
The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing. ieee. org/lpirc) is an annual competition started in 2015.
no code implementations • 21 Aug 2018 • Fei Sun, Peng Jiang, Hanxiao Sun, Changhua Pei, Wenwu Ou, Xiaobo Wang
For the second constraint, we restore the key information by copying words from the knowledge encoder with the help of the soft gating mechanism.
no code implementations • 4 Jun 2018 • Fei Sun, Jingchao Li, Jieming Zhou
Starting from the global financial crisis to the more recent disruptions brought about by geopolitical tensions and public health crises, the volatility of risk in financial markets has increased significantly.
no code implementations • 24 Mar 2016 • Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, Xue-Qi Cheng
Recent work exhibited that distributed word representations are good at capturing linguistic regularities in language.
no code implementations • EMNLP 2015 • Yan-ran Li, Wenjie Li, Fei Sun, Sujian Li
Distributed word representations are very useful for capturing semantic information and have been successfully applied in a variety of NLP tasks, especially on English.