Search Results for author: Fei Tian

Found 26 papers, 7 papers with code

Neural Machine Translation with Soft Prototype

1 code implementation NeurIPS 2019 Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Cheng Xiang Zhai, Tie-Yan Liu

Neural machine translation models usually use the encoder-decoder framework and generate translation from left to right (or right to left) without fully utilizing the target-side global information.

Decoder Machine Translation +1

Hint-Based Training for Non-Autoregressive Machine Translation

1 code implementation IJCNLP 2019 Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Li-Wei Wang, Tie-Yan Liu

Due to the unparallelizable nature of the autoregressive factorization, AutoRegressive Translation (ART) models have to generate tokens sequentially during decoding and thus suffer from high inference latency.

de-en Machine Translation +1

Depth Growing for Neural Machine Translation

1 code implementation ACL 2019 Lijun Wu, Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Jian-Huang Lai, Tie-Yan Liu

While very deep neural networks have shown effectiveness for computer vision and text classification applications, how to increase the network depth of neural machine translation (NMT) models for better translation quality remains a challenging problem.

Machine Translation NMT +3

Multi-Agent Dual Learning

no code implementations ICLR 2019 Yiren Wang, Yingce Xia, Tianyu He, Fei Tian, Tao Qin, ChengXiang Zhai, Tie-Yan Liu

Dual learning has attracted much attention in machine learning, computer vision and natural language processing communities.

Machine Translation Translation

Hint-based Training for Non-Autoregressive Translation

no code implementations ICLR 2019 Zhuohan Li, Di He, Fei Tian, Tao Qin, Li-Wei Wang, Tie-Yan Liu

To improve the accuracy of NART models, in this paper, we propose to leverage the hints from a well-trained ART model to train the NART model.

de-en Machine Translation +1

Non-Autoregressive Machine Translation with Auxiliary Regularization

no code implementations22 Feb 2019 Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, Tie-Yan Liu

However, the high efficiency has come at the cost of not capturing the sequential dependency on the target side of translation, which causes NAT to suffer from two kinds of translation errors: 1) repeated translations (due to indistinguishable adjacent decoder hidden states), and 2) incomplete translations (due to incomplete transfer of source side information via the decoder hidden states).

Decoder Machine Translation +2

Learning to Teach with Dynamic Loss Functions

no code implementations NeurIPS 2018 Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jian-Huang Lai, Tie-Yan Liu

Different from typical learning settings in which the loss function of a machine learning model is predefined and fixed, in our framework, the loss function of a machine learning model (we call it student) is defined by another machine learning model (we call it teacher).

BIG-bench Machine Learning Image Classification +1

Beyond Error Propagation in Neural Machine Translation: Characteristics of Language Also Matter

no code implementations EMNLP 2018 Lijun Wu, Xu Tan, Di He, Fei Tian, Tao Qin, Jian-Huang Lai, Tie-Yan Liu

Many previous works have discussed the relationship between error propagation and the \emph{accuracy drop} (i. e., the left part of the translated sentence is often better than its right part in left-to-right decoding models) problem.

Machine Translation Sentence +2

A Study of Reinforcement Learning for Neural Machine Translation

1 code implementation EMNLP 2018 Lijun Wu, Fei Tian, Tao Qin, Jian-Huang Lai, Tie-Yan Liu

Recent studies have shown that reinforcement learning (RL) is an effective approach for improving the performance of neural machine translation (NMT) system.

Machine Translation NMT +3

Neural Architecture Optimization

5 code implementations NeurIPS 2018 Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, Tie-Yan Liu

The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy.

Decoder Evolutionary Algorithms +4

Model-Level Dual Learning

no code implementations ICML 2018 Yingce Xia, Xu Tan, Fei Tian, Tao Qin, Nenghai Yu, Tie-Yan Liu

Many artificial intelligence tasks appear in dual forms like English$\leftrightarrow$French translation and speech$\leftrightarrow$text transformation.

Machine Translation Sentiment Analysis +1

Towards Binary-Valued Gates for Robust LSTM Training

1 code implementation ICML 2018 Zhuohan Li, Di He, Fei Tian, Wei Chen, Tao Qin, Li-Wei Wang, Tie-Yan Liu

Long Short-Term Memory (LSTM) is one of the most widely used recurrent structures in sequence modeling.

Learning to Teach

no code implementations ICLR 2018 Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, Tie-Yan Liu

Teaching plays a very important role in our society, by spreading human knowledge and educating our next generations.

BIG-bench Machine Learning Image Classification

Deliberation Networks: Sequence Generation Beyond One-Pass Decoding

no code implementations NeurIPS 2017 Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, Tie-Yan Liu

In this work, we introduce the deliberation process into the encoder-decoder framework and propose deliberation networks for sequence generation.

Decoder Image Captioning +4

Adversarial Neural Machine Translation

no code implementations20 Apr 2017 Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jian-Huang Lai, Tie-Yan Liu

The goal of the adversary is to differentiate the translation result generated by the NMT model from that by human.

Machine Translation NMT +1

Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves

no code implementations7 Apr 2016 Fei Tian, Bin Gao, Di He, Tie-Yan Liu

We propose Sentence Level Recurrent Topic Model (SLRTM), a new topic model that assumes the generation of each word within a sentence to depend on both the topic of the sentence and the whole history of its preceding words in the sentence.

Sentence Short-Text Conversation +1

Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

no code implementations29 May 2015 Huazheng Wang, Fei Tian, Bin Gao, Jiang Bian, Tie-Yan Liu

Second, we obtain distributed representations of words and relations by leveraging a novel word embedding method that considers the multi-sense nature of words and the relational knowledge among words (or their senses) contained in dictionaries.

Learning Better Word Embedding by Asymmetric Low-Rank Projection of Knowledge Graph

no code implementations19 May 2015 Fei Tian, Bin Gao, Enhong Chen, Tie-Yan Liu

Although these works have achieved certain success, they have neglected some important facts about knowledge graphs: (i) many relationships in knowledge graphs are \emph{many-to-one}, \emph{one-to-many} or even \emph{many-to-many}, rather than simply \emph{one-to-one}; (ii) most head entities and tail entities in knowledge graphs come from very different semantic spaces.

Knowledge Graphs

Generalization Analysis for Game-Theoretic Machine Learning

no code implementations9 Oct 2014 Haifang Li, Fei Tian, Wei Chen, Tao Qin, Tie-Yan Liu

For Internet applications like sponsored search, cautions need to be taken when using machine learning to optimize their mechanisms (e. g., auction) since self-interested agents in these applications may change their behaviors (and thus the data distribution) in response to the mechanisms.

BIG-bench Machine Learning

Agent Behavior Prediction and Its Generalization Analysis

no code implementations19 Apr 2014 Fei Tian, Haifang Li, Wei Chen, Tao Qin, Enhong Chen, Tie-Yan Liu

Then we prove a generalization bound for the machine learning algorithms on the behavior data generated by the new Markov chain, which depends on both the Markovian parameters and the covering number of the function class compounded by the loss function for behavior prediction and the behavior prediction model.

BIG-bench Machine Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.