Search Results for author: Felipe Kitamura

Found 4 papers, 0 papers with code

RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models

no code implementations16 Jan 2024 Farhad Maleki, Linda Moy, Reza Forghani, Tapotosh Ghosh, Katie Ovens, Steve Langer, Pouria Rouzrokh, Bardia Khosravi, Ali Ganjizadeh, Daniel Warren, Roxana Daneshjou, Mana Moassefi, Atlas Haddadi Avval, Susan Sotardi, Neil Tenenholtz, Felipe Kitamura, Timothy Kline

Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases.

Image Segmentation Medical Image Segmentation +3

Best Practices and Scoring System on Reviewing A.I. based Medical Imaging Papers: Part 1 Classification

no code implementations3 Feb 2022 Timothy L. Kline, Felipe Kitamura, Ian Pan, Amine M. Korchi, Neil Tenenholtz, Linda Moy, Judy Wawira Gichoya, Igor Santos, Steven Blumer, Misha Ysabel Hwang, Kim-Ann Git, Abishek Shroff, Elad Walach, George Shih, Steve Langer

The goal of this series is to provide resources to not only help improve the review process for A. I.-based medical imaging papers, but to facilitate a standard for the information that is presented within all components of the research study.

Image Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.