no code implementations • 25 Aug 2024 • Felix J. Dorfner, Amin Dada, Felix Busch, Marcus R. Makowski, Tianyu Han, Daniel Truhn, Jens Kleesiek, Madhumita Sushil, Jacqueline Lammert, Lisa C. Adams, Keno K. Bressem
Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data.
1 code implementation • 10 May 2024 • Hartmut Häntze, Lina Xu, Christian J. Mertens, Felix J. Dorfner, Leonhard Donle, Felix Busch, Avan Kader, Sebastian Ziegelmayer, Nadine Bayerl, Nassir Navab, Daniel Rueckert, Julia Schnabel, Hugo JWL Aerts, Daniel Truhn, Fabian Bamberg, Jakob Weiß, Christopher L. Schlett, Steffen Ringhof, Thoralf Niendorf, Tobias Pischon, Hans-Ulrich Kauczor, Tobias Nonnenmacher, Thomas Kröncke, Henry Völzke, Jeanette Schulz-Menger, Klaus Maier-Hein, Mathias Prokop, Bram van Ginneken, Alessa Hering, Marcus R. Makowski, Lisa C. Adams, Keno K. Bressem
A human-in-the-loop annotation workflow was employed, leveraging cross-modality transfer learning from an existing CT segmentation model to segment 40 anatomical structures.
no code implementations • 19 Feb 2024 • Felix J. Dorfner, Liv Jürgensen, Leonhard Donle, Fares Al Mohamad, Tobias R. Bodenmann, Mason C. Cleveland, Felix Busch, Lisa C. Adams, James Sato, Thomas Schultz, Albert E. Kim, Jameson Merkow, Keno K. Bressem, Christopher P. Bridge
While recent publications have explored GPT-4 in its application to extracting information of interest from radiology reports, there has not been a real-world comparison of GPT-4 to different leading open-source models.
1 code implementation • 25 Jan 2024 • Lisa Adams, Felix Busch, Tianyu Han, Jean-Baptiste Excoffier, Matthieu Ortala, Alexander Löser, Hugo JWL. Aerts, Jakob Nikolas Kather, Daniel Truhn, Keno Bressem
However, all models struggled significantly in tasks requiring the identification of missing information, highlighting a critical area for improvement in clinical data interpretation.
no code implementations • 24 Nov 2023 • Felix Busch, Tianyu Han, Marcus Makowski, Daniel Truhn, Keno Bressem, Lisa Adams
The study evaluates and compares GPT-4 and GPT-4Vision for radiological tasks, suggesting GPT-4Vision may recognize radiological features from images, thereby enhancing its diagnostic potential over text-based descriptions.
no code implementations • 14 Mar 2023 • Keno K. Bressem, Jens-Michalis Papaioannou, Paul Grundmann, Florian Borchert, Lisa C. Adams, Leonhard Liu, Felix Busch, Lina Xu, Jan P. Loyen, Stefan M. Niehues, Moritz Augustin, Lennart Grosser, Marcus R. Makowski, Hugo JWL. Aerts, Alexander Löser
This paper presents medBERTde, a pre-trained German BERT model specifically designed for the German medical domain.
no code implementations • 27 Sep 2022 • Lisa C. Adams, Felix Busch, Daniel Truhn, Marcus R. Makowski, Hugo JWL. Aerts, Keno K. Bressem
Generative models such as DALL-E 2 could represent a promising future tool for image generation, augmentation, and manipulation for artificial intelligence research in radiology provided that these models have sufficient medical domain knowledge.