Search Results for author: Fengwei Zhou

Found 14 papers, 4 papers with code

MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps

no code implementations NeurIPS 2021 Muhammad Awais, Fengwei Zhou, Chuanlong Xie, Jiawei Li, Sung-Ho Bae, Zhenguo Li

First, we theoretically show the transferability of robustness from an adversarially trained teacher model to a student model with the help of mixup augmentation.

Transfer Learning

NAS-OoD: Neural Architecture Search for Out-of-Distribution Generalization

no code implementations ICCV 2021 Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S. -H. Gary Chan, Zhenguo Li

In this work, we propose robust Neural Architecture Search for OoD generalization (NAS-OoD), which optimizes the architecture with respect to its performance on generated OoD data by gradient descent.

Domain Generalization Neural Architecture Search +1

Adversarial Robustness for Unsupervised Domain Adaptation

no code implementations ICCV 2021 Muhammad Awais, Fengwei Zhou, Hang Xu, Lanqing Hong, Ping Luo, Sung-Ho Bae, Zhenguo Li

Extensive Unsupervised Domain Adaptation (UDA) studies have shown great success in practice by learning transferable representations across a labeled source domain and an unlabeled target domain with deep models.

Adversarial Robustness Unsupervised Domain Adaptation

Relaxed Conditional Image Transfer for Semi-supervised Domain Adaptation

no code implementations5 Jan 2021 Qijun Luo, Zhili Liu, Lanqing Hong, Chongxuan Li, Kuo Yang, Liyuan Wang, Fengwei Zhou, Guilin Li, Zhenguo Li, Jun Zhu

Semi-supervised domain adaptation (SSDA), which aims to learn models in a partially labeled target domain with the assistance of the fully labeled source domain, attracts increasing attention in recent years.

Domain Adaptation

DiffAutoML: Differentiable Joint Optimization for Efficient End-to-End Automated Machine Learning

no code implementations1 Jan 2021 Kaichen Zhou, Lanqing Hong, Fengwei Zhou, Binxin Ru, Zhenguo Li, Trigoni Niki, Jiashi Feng

Our method performs co-optimization of the neural architectures, training hyper-parameters and data augmentation policies in an end-to-end fashion without the need of model retraining.

Data Augmentation Neural Architecture Search

Multi-objective Neural Architecture Search via Non-stationary Policy Gradient

no code implementations23 Jan 2020 Zewei Chen, Fengwei Zhou, George Trimponias, Zhenguo Li

Despite recent progress, the problem of approximating the full Pareto front accurately and efficiently remains challenging.

Neural Architecture Search

Formulating Camera-Adaptive Color Constancy as a Few-shot Meta-Learning Problem

no code implementations28 Nov 2018 Steven McDonagh, Sarah Parisot, Fengwei Zhou, Xing Zhang, Ales Leonardis, Zhenguo Li, Gregory Slabaugh

In this work, we propose a new approach that affords fast adaptation to previously unseen cameras, and robustness to changes in capture device by leveraging annotated samples across different cameras and datasets.

Few-Shot Camera-Adaptive Color Constancy Frame +1

Deep Meta-Learning: Learning to Learn in the Concept Space

no code implementations10 Feb 2018 Fengwei Zhou, Bin Wu, Zhenguo Li

Few-shot learning remains challenging for meta-learning that learns a learning algorithm (meta-learner) from many related tasks.

Few-Shot Learning

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

7 code implementations31 Jul 2017 Zhenguo Li, Fengwei Zhou, Fei Chen, Hang Li

In contrast, meta-learning learns from many related tasks a meta-learner that can learn a new task more accurately and faster with fewer examples, where the choice of meta-learners is crucial.

Few-Shot Learning reinforcement-learning

Cannot find the paper you are looking for? You can Submit a new open access paper.