no code implementations • Findings (NAACL) 2022 • Jakub Pokrywka, Filip Graliński, Krzysztof Jassem, Karol Kaczmarek, Krzysztof Jurkiewicz, Piotr Wierzchon
The aim of the paper is to apply, for historical texts, the methodology used commonly to solve various NLP tasks defined for contemporary data, i. e. pre-train and fine-tune large Transformer models.
1 code implementation • 28 Apr 2023 • Michał Turski, Tomasz Stanisławek, Karol Kaczmarek, Paweł Dyda, Filip Graliński
In recent years, the field of document understanding has progressed a lot.
no code implementations • 12 May 2021 • Tomasz Stanisławek, Filip Graliński, Anna Wróblewska, Dawid Lipiński, Agnieszka Kaliska, Paulina Rosalska, Bartosz Topolski, Przemysław Biecek
The relevance of the Key Information Extraction (KIE) task is increasingly important in natural language processing problems.
1 code implementation • CONLL 2020 • Tomasz Dwojak, Michał Pietruszka, Łukasz Borchmann, Jakub Chłędowski, Filip Graliński
This paper investigates various Transformer architectures on the WikiReading Information Extraction and Machine Reading Comprehension dataset.
no code implementations • 27 Oct 2020 • Łukasz Borchmann, Dawid Jurkiewicz, Filip Graliński, Tomasz Górecki
The paper presents a novel method of finding a fragment in a long temporal sequence similar to the set of shorter sequences.
Ranked #2 on
Semantic Retrieval
on Contract Discovery
1 code implementation • 8 Oct 2020 • Michał Pietruszka, Łukasz Borchmann, Filip Graliński
We propose a differentiable successive halving method of relaxing the top-k operator, rendering gradient-based optimization possible.
no code implementations • 15 Jun 2020 • Tomasz Dwojak, Michał Pietruszka, Łukasz Borchmann, Filip Graliński, Jakub Chłędowski
In this paper, we investigate the Dual-source Transformer architecture on the WikiReading information extraction and machine reading comprehension dataset.
no code implementations • SEMEVAL 2020 • Dawid Jurkiewicz, Łukasz Borchmann, Izabela Kosmala, Filip Graliński
This paper presents the winning system for the propaganda Technique Classification (TC) task and the second-placed system for the propaganda Span Identification (SI) task.
no code implementations • 4 Mar 2020 • Filip Graliński, Tomasz Stanisławek, Anna Wróblewska, Dawid Lipiński, Agnieszka Kaliska, Paulina Rosalska, Bartosz Topolski, Przemysław Biecek
State-of-the-art solutions for Natural Language Processing (NLP) are able to capture a broad range of contexts, like the sentence-level context or document-level context for short documents.
1 code implementation • 19 Feb 2020 • Łukasz Garncarek, Rafał Powalski, Tomasz Stanisławek, Bartosz Topolski, Piotr Halama, Michał Turski, Filip Graliński
We introduce a simple new approach to the problem of understanding documents where non-trivial layout influences the local semantics.
Ranked #3 on
Key Information Extraction
on Kleister NDA
1 code implementation • Findings of the Association for Computational Linguistics 2020 • Łukasz Borchmann, Dawid Wiśniewski, Andrzej Gretkowski, Izabela Kosmala, Dawid Jurkiewicz, Łukasz Szałkiewicz, Gabriela Pałka, Karol Kaczmarek, Agnieszka Kaliska, Filip Graliński
We propose a new shared task of semantic retrieval from legal texts, in which a so-called contract discovery is to be performed, where legal clauses are extracted from documents, given a few examples of similar clauses from other legal acts.
Ranked #1 on
Semantic Retrieval
on Contract Discovery