1 code implementation • ACL (CASE) 2021 • Fiona Anting Tan, Sujatha Das Gollapalli, See-Kiong Ng
Event Sentence Coreference Identification (ESCI) aims to cluster event sentences that refer to the same event together for information extraction.
1 code implementation • EMNLP (CINLP) 2021 • Fiona Anting Tan, Devamanyu Hazarika, See-Kiong Ng, Soujanya Poria, Roger Zimmermann
Scarcity of annotated causal texts leads to poor robustness when training state-of-the-art language models for causal sentence classification.
no code implementations • 16 May 2023 • Fiona Anting Tan, Debdeep Paul, Sahim Yamaura, Miura Koji, See-Kiong Ng
In this work, we propose a methodology to construct causal knowledge graphs (KGs) from news using two steps: (1) Extraction of Causal Relations, and (2) Argument Clustering and Representation into KG.
no code implementations • 22 Nov 2022 • Fiona Anting Tan, Hansi Hettiarachchi, Ali Hürriyetoğlu, Tommaso Caselli, Onur Uca, Farhana Ferdousi Liza, Nelleke Oostdijk
The best F1 scores achieved for Subtask 1 and 2 were 86. 19% and 54. 15%, respectively.
1 code implementation • 19 Aug 2022 • Fiona Anting Tan, Xinyu Zuo, See-Kiong Ng
Current causal text mining datasets vary in objectives, data coverage, and annotation schemes.
1 code implementation • LREC 2022 • Fiona Anting Tan, Ali Hürriyetoğlu, Tommaso Caselli, Nelleke Oostdijk, Tadashi Nomoto, Hansi Hettiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi Liza, Tiancheng Hu
Leveraging each of these external datasets for training, we achieved up to approximately 64% F1 on the CNC test set without additional fine-tuning.
2 code implementations • 6 Dec 2021 • Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, Tongshuang Wu, Jascha Sohl-Dickstein, Jinho D. Choi, Eduard Hovy, Ondrej Dusek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honore, Ishan Jindal, Przemyslaw K. Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard de Melo, Simon Meoni, Maxime Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Muennighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicolas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos P. H. S., Ananya B. Sai, Robin M. Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib N. Shamsi, Xudong Shen, Haoyue Shi, Yiwen Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, KV Aditya Srivatsa, Tony Sun, Mukund Varma T, A Tabassum, Fiona Anting Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Gloria Wang, Zijie J. Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyi Wu, Witold Wydmański, Tianbao Xie, Usama Yaseen, Michael A. Yee, Jing Zhang, Yue Zhang
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on.
1 code implementation • FNP 2021 • Fiona Anting Tan, See-Kiong Ng
Automatic identification of cause-effect spans in financial documents is important for causality modelling and understanding reasons that lead to financial events.