1 code implementation • 24 Nov 2024 • Gustav Müller-Franzes, Firas Khader, Robert Siepmann, Tianyu Han, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis.
Ranked #5 on Lung Nodule Classification on LIDC-IDRI (AUC metric, using extra training data)
no code implementations • 23 Jun 2024 • Tianyu Han, Sven Nebelung, Firas Khader, Jakob Nikolas Kather, Daniel Truhn
Denoising diffusion models offer a promising approach to accelerating magnetic resonance imaging (MRI) and producing diagnostic-level images in an unsupervised manner.
no code implementations • 3 Jun 2024 • Firas Khader, Omar S. M. El Nahhas, Tianyu Han, Gustav Müller-Franzes, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The Transformer model has been pivotal in advancing fields such as natural language processing, speech recognition, and computer vision.
1 code implementation • 6 Mar 2024 • Omar S. M. El Nahhas, Georg Wölflein, Marta Ligero, Tim Lenz, Marko van Treeck, Firas Khader, Daniel Truhn, Jakob Nikolas Kather
Deep Learning (DL) can predict biomarkers directly from digitized cancer histology in a weakly-supervised setting.
1 code implementation • 8 Feb 2024 • Patrick Wienholt, Alexander Hermans, Firas Khader, Behrus Puladi, Bastian Leibe, Christiane Kuhl, Sven Nebelung, Daniel Truhn
This study investigates the application of ordinal regression methods for categorizing disease severity in chest radiographs.
1 code implementation • 18 Dec 2023 • Omar S. M. El Nahhas, Marko van Treeck, Georg Wölflein, Michaela Unger, Marta Ligero, Tim Lenz, Sophia J. Wagner, Katherine J. Hewitt, Firas Khader, Sebastian Foersch, Daniel Truhn, Jakob Nikolas Kather
Hematoxylin- and eosin (H&E) stained whole-slide images (WSIs) are the foundation of diagnosis of cancer.
Ranked #1 on Classification on TCGA
1 code implementation • 29 Sep 2023 • Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Kather, Daniel Truhn
Current techniques for evaluating deep learning models cannot visualize confounding factors at a diagnostic level.
1 code implementation • 29 Sep 2023 • Tianyu Han, Sven Nebelung, Firas Khader, Tianci Wang, Gustav Mueller-Franzes, Christiane Kuhl, Sebastian Försch, Jens Kleesiek, Christoph Haarburger, Keno K. Bressem, Jakob Nikolas Kather, Daniel Truhn
We validate our findings in a set of 1, 038 incorrect biomedical facts.
no code implementations • 11 May 2023 • Firas Khader, Jakob Nikolas Kather, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
However, while the conventional transformer allows for a simultaneous processing of a large set of input tokens, the computational demand scales quadratically with the number of input tokens and thus quadratically with the number of image patches.
no code implementations • 11 May 2023 • Firas Khader, Gustav Müller-Franzes, Tianyu Han, Sven Nebelung, Christiane Kuhl, Johannes Stegmaier, Daniel Truhn
X-rays are widely available and even if the CT reconstructed from these radiographs is not a replacement of a complete CT in the diagnostic setting, it might serve to spare the patients from radiation where a CT is only acquired for rough measurements such as determining organ size.
1 code implementation • 18 Apr 2023 • Gustav Müller-Franzes, Fritz Müller-Franzes, Luisa Huck, Vanessa Raaff, Eva Kemmer, Firas Khader, Soroosh Tayebi Arasteh, Teresa Nolte, Jakob Nikolas Kather, Sven Nebelung, Christiane Kuhl, Daniel Truhn
Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement.
1 code implementation • 3 Feb 2023 • Coen de Vente, Koenraad A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, Firas Khader, Daniel Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, Adrian Galdran, Miguel Ángel González Ballester, Gustavo Carneiro, Devika R G, Hrishikesh P S, Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, Satoshi Kasai, Edward Wang, Ashritha Durvasula, Jónathan Heras, Miguel Ángel Zapata, Teresa Araújo, Guilherme Aresta, Hrvoje Bogunović, Mustafa Arikan, Yeong Chan Lee, Hyun Bin Cho, Yoon Ho Choi, Abdul Qayyum, Imran Razzak, Bram van Ginneken, Hans G. Lemij, Clara I. Sánchez
Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible.
1 code implementation • 18 Dec 2022 • Firas Khader, Gustav Mueller-Franzes, Tianci Wang, Tianyu Han, Soroosh Tayebi Arasteh, Christoph Haarburger, Johannes Stegmaier, Keno Bressem, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data.
1 code implementation • 14 Dec 2022 • Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data.
1 code implementation • 24 Nov 2022 • Soroosh Tayebi Arasteh, Peter Isfort, Marwin Saehn, Gustav Mueller-Franzes, Firas Khader, Jakob Nikolas Kather, Christiane Kuhl, Sven Nebelung, Daniel Truhn
Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL).
1 code implementation • 7 Nov 2022 • Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0. 91 vs. 0. 95 without vs. with synthetic data).