no code implementations • 2 Mar 2021 • Lucas D. Young, Fitsum A. Reda, Rakesh Ranjan, Jon Morton, Jun Hu, Yazhu Ling, Xiaoyu Xiang, David Liu, Vikas Chandra
(2) A novel Feature Matching Loss that allows knowledge distillation from large denoising networks in the form of a perceptual content loss.
no code implementations • 14 Jul 2020 • Guilin Liu, Rohan Taori, Ting-Chun Wang, Zhiding Yu, Shiqiu Liu, Fitsum A. Reda, Karan Sapra, Andrew Tao, Bryan Catanzaro
Specifically, we directly treat the whole encoded feature map of the input texture as transposed convolution filters and the features' self-similarity map, which captures the auto-correlation information, as input to the transposed convolution.
1 code implementation • ICCV 2019 • Fitsum A. Reda, Deqing Sun, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz, Bryan Catanzaro
We further introduce a pseudo supervised loss term that enforces the interpolated frames to be consistent with predictions of a pre-trained interpolation model.
Ranked #1 on
Video Frame Interpolation
on UCF101
(PSNR (sRGB) metric)
5 code implementations • CVPR 2019 • Yi Zhu, Karan Sapra, Fitsum A. Reda, Kevin J. Shih, Shawn Newsam, Andrew Tao, Bryan Catanzaro
In this paper, we present a video prediction-based methodology to scale up training sets by synthesizing new training samples in order to improve the accuracy of semantic segmentation networks.
Ranked #2 on
Semantic Segmentation
on KITTI Semantic Segmentation
(using extra training data)
4 code implementations • 28 Nov 2018 • Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu, Andrew Tao, Bryan Catanzaro
In this paper, we present a simple yet effective padding scheme that can be used as a drop-in module for existing convolutional neural networks.
2 code implementations • 2 Nov 2018 • Fitsum A. Reda, Guilin Liu, Kevin J. Shih, Robert Kirby, Jon Barker, David Tarjan, Andrew Tao, Bryan Catanzaro
We present an approach for high-resolution video frame prediction by conditioning on both past frames and past optical flows.
1 code implementation • ECCV 2018 • Fitsum A. Reda, Guilin Liu, Kevin J. Shih, Robert Kirby, Jon Barker, David Tarjan, Andrew Tao, Bryan Catanzaro
We present an approach for high-resolution video frame prediction by conditioning on both past frames and past optical flows.
Ranked #1 on
Video Prediction
on YouTube-8M
60 code implementations • ECCV 2018 • Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, Bryan Catanzaro
Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked holes (typically the mean value).