Search Results for author: Frédéric Guyard

Found 3 papers, 1 papers with code

Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly Detection?

no code implementations4 Apr 2022 Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, Maria A. Zuluaga

In this work, we study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches on five real-world open datasets.

BIG-bench Machine Learning Time Series Anomaly Detection +1

USAD: UnSupervised Anomaly Detection on Multivariate Time Series

2 code implementations KDD 2020 Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, Maria A. Zuluaga

Through a feasibility study using Orange's proprietary data we have been able to validate Orange's requirements on scalability, stability, robustness, training speed and high performance.

Time Series Unsupervised Anomaly Detection

Cannot find the paper you are looking for? You can Submit a new open access paper.