no code implementations • 8 Feb 2024 • Mohak Bhardwaj, Thomas Lampe, Michael Neunert, Francesco Romano, Abbas Abdolmaleki, Arunkumar Byravan, Markus Wulfmeier, Martin Riedmiller, Jonas Buchli
Recent advances in real-world applications of reinforcement learning (RL) have relied on the ability to accurately simulate systems at scale.
no code implementations • 24 May 2023 • Ken Caluwaerts, Atil Iscen, J. Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel Freeman, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, Nathan Batchelor, Steven Bohez, Federico Casarini, Jose Enrique Chen, Omar Cortes, Erwin Coumans, Adil Dostmohamed, Gabriel Dulac-Arnold, Alejandro Escontrela, Erik Frey, Roland Hafner, Deepali Jain, Bauyrjan Jyenis, Yuheng Kuang, Edward Lee, Linda Luu, Ofir Nachum, Ken Oslund, Jason Powell, Diego Reyes, Francesco Romano, Feresteh Sadeghi, Ron Sloat, Baruch Tabanpour, Daniel Zheng, Michael Neunert, Raia Hadsell, Nicolas Heess, Francesco Nori, Jeff Seto, Carolina Parada, Vikas Sindhwani, Vincent Vanhoucke, Jie Tan
In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states.
no code implementations • 31 Mar 2022 • Steven Bohez, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland Hafner, Markus Wulfmeier, Michael Neunert, Ben Moran, Noah Siegel, Andrea Huber, Francesco Romano, Nathan Batchelor, Federico Casarini, Josh Merel, Raia Hadsell, Nicolas Heess
We investigate the use of prior knowledge of human and animal movement to learn reusable locomotion skills for real legged robots.
no code implementations • 3 Mar 2021 • Francesco Romano, Bartomeu Massutí-Ballester, Tilman Binder, Georg Herdrich, Stefanos Fasoulas, Tony Schönherr
An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster.
Space Physics
no code implementations • 1 Oct 2020 • Sabrina Livadiotti, Nicholas H. Crisp, Peter C. E. Roberts, Stephen D. Worrall, Vitor T. A. Oiko, Steve Edmondson, Sarah J. Haigh, Claire Huyton, Katharine L. Smith, Luciana A. Sinpetru, Brandon E. A. Holmes, Jonathan Becedas, Rosa María Domínguez, Valentín Cañas, Simon Christensen, Anders Mølgaard, Jens Nielsen, Morten Bisgaard, Yung-An Chan, Georg H. Herdrich, Francesco Romano, Stefanos Fasoulas, Constantin Traub, Daniel Garcia-Almiñana, Silvia Rodriguez-Donaire, Miquel Sureda, Dhiren Kataria, Badia Belkouchi, Alexis Conte, Jose Santiago Perez, Rachel Villain, Ron Outlaw
Limits and assets of each model have been discussed with regards to the context of this paper.
Space Physics
no code implementations • 2 Jan 2020 • Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, Martin Riedmiller
In contrast, we propose to treat hybrid problems in their 'native' form by solving them with hybrid reinforcement learning, which optimizes for discrete and continuous actions simultaneously.
no code implementations • 21 Oct 2019 • Rae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom Erez, Yuval Tassa, Francesco Nori
Learning robotic control policies in the real world gives rise to challenges in data efficiency, safety, and controlling the initial condition of the system.