no code implementations • 29 Nov 2023 • Fabrizio Ferrandi, Serena Curzel, Leandro Fiorin, Daniele Ielmini, Cristina Silvano, Francesco Conti, Alessio Burrello, Francesco Barchi, Luca Benini, Luciano Lavagno, Teodoro Urso, Enrico Calore, Sebastiano Fabio Schifano, Cristian Zambelli, Maurizio Palesi, Giuseppe Ascia, Enrico Russo, Nicola Petra, Davide De Caro, Gennaro Di Meo, Valeria Cardellini, Salvatore Filippone, Francesco Lo Presti, Francesco Silvestri, Paolo Palazzari, Stefania Perri
This survey provides a holistic review of the most influential design methodologies and EDA tools proposed in recent years to implement Deep Learning accelerators, offering the reader a wide perspective in this rapidly evolving field.
1 code implementation • 1 Jul 2021 • Elia Costa, Francesco Silvestri
A free-floating bike-sharing system (FFBSS) is a dockless rental system where an individual can borrow a bike and returns it anywhere, within the service area.
1 code implementation • 26 Jan 2021 • Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri
Given a set of points $S$ and a radius parameter $r>0$, the $r$-near neighbor ($r$-NN) problem asks for a data structure that, given any query point $q$, returns a point $p$ within distance at most $r$ from $q$.
no code implementations • 22 Jun 2020 • Thomas D. Ahle, Francesco Silvestri
Tensor Core Units (TCUs) are hardware accelerators developed for deep neural networks, which efficiently support the multiplication of two dense $\sqrt{m}\times \sqrt{m}$ matrices, where $m$ is a given hardware parameter.
no code implementations • 19 Aug 2019 • Rezaul Chowdhury, Francesco Silvestri, Flavio Vella
To respond to the need of efficient training and inference of deep neural networks, a plethora of domain-specific hardware architectures have been introduced, such as Google Tensor Processing Units and NVIDIA Tensor Cores.
1 code implementation • 5 Jun 2019 • Martin Aumüller, Rasmus Pagh, Francesco Silvestri
There are several variants of the similarity search problem, and one of the most relevant is the $r$-near neighbor ($r$-NN) problem: given a radius $r>0$ and a set of points $S$, construct a data structure that, for any given query point $q$, returns a point $p$ within distance at most $r$ from $q$.
no code implementations • 25 Jul 2016 • Francesco Silvestri, Gerhard Reinelt, Christoph Schnörr
We consider clustering problems where the goal is to determine an optimal partition of a given point set in Euclidean space in terms of a collection of affine subspaces.
no code implementations • 9 Oct 2015 • Thomas D. Ahle, Rasmus Pagh, Ilya Razenshteyn, Francesco Silvestri
* New upper and lower bounds for (A)LSH-based algorithms.