no code implementations • 7 Aug 2023 • Christoffer Riis, Francisco N. Antunes, Tatjana Bolić, Gérald Gurtner, Andrew Cook, Carlos Lima Azevedo, Francisco Câmara Pereira
Lastly, we discuss two practical approaches for reducing the computational burden of the metamodelling further: we introduce a stopping criterion for active learning based on the inherent uncertainty of the metamodel, and we show how the simulations used for the metamodel can be reused across key performance indicators, thus decreasing the overall number of simulations needed.