no code implementations • 13 Jun 2024 • Stefan P. Hein, Manuel Schultheiss, Andrei Gafita, Raphael Zaum, Farid Yagubbayli, Robert Tauber, Isabel Rauscher, Matthias Eiber, Franz Pfeiffer, Wolfgang A. Weber
Our algorithm extracts suitable lesion patches and forwards them into a Siamese CNN trained to classify the lesion patch pairs as corresponding or non-corresponding lesions.
1 code implementation • 28 Jul 2023 • Annika Ries, Tina Dorosti, Johannes Thalhammer, Daniel Sasse, Andreas Sauter, Felix Meurer, Ashley Benne, Tobias Lasser, Franz Pfeiffer, Florian Schaff, Daniela Pfeiffer
Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views.
no code implementations • 16 Mar 2023 • Johannes Thalhammer, Manuel Schultheiss, Tina Dorosti, Tobias Lasser, Franz Pfeiffer, Daniela Pfeiffer, Florian Schaff
Results: The U-Net performed superior compared to unprocessed and TV-processed images with respect to image quality and automated hemorrhage diagnosis.
no code implementations • 13 Mar 2023 • Tina Dorosti, Manuel Schultheiss, Felix Hofmann, Johannes Thalhammer, Luisa Kirchner, Theresa Urban, Franz Pfeiffer, Florian Schaff, Tobias Lasser, Daniela Pfeiffer
Comparably, with input images manually adjusted to the emphysema window, the DenseNet model predicted COPD with a mean AUC of 0. 86 [0. 82, 0. 89].
no code implementations • 1 Jul 2022 • Theodor Cheslerean-Boghiu, Felix C. Hofmann, Manuel Schultheiß, Franz Pfeiffer, Daniela Pfeiffer, Tobias Lasser
We investigate the performance of the network on sparse-view chest CT scans, and we highlight the added benefit of having a trainable reconstruction layer over the more conventional fixed ones.
no code implementations • 24 Oct 2021 • Manuel Schultheiss, Philipp Schmette, Thorsten Sellerer, Rafael Schick, Kirsten Taphorn, Korbinian Mechlem, Lorenz Birnbacher, Bernhard Renger, Marcus R. Makowski, Franz Pfeiffer, Daniela Pfeiffer
Purpose: We aimed to estimate the total lung volume (TLV) from real and synthetic frontal X-ray radiographs on a pixel level using lung thickness maps generated by a U-Net.