no code implementations • ECCV 2020 • Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard, Vladislav Golyanik, Christian Theobalt
3D hand reconstruction from images is a widely-studied problem in computer vision and graphics, and has a particularly high relevance for virtual and augmented reality.
no code implementations • 22 Dec 2023 • Soshi Shimada, Franziska Mueller, Jan Bednarik, Bardia Doosti, Bernd Bickel, Danhang Tang, Vladislav Golyanik, Jonathan Taylor, Christian Theobalt, Thabo Beeler
To improve the naturalness of the synthesized 3D hand object motions, this work proposes MACS the first MAss Conditioned 3D hand and object motion Synthesis approach.
no code implementations • ICCV 2023 • Tze Ho Elden Tse, Franziska Mueller, Zhengyang Shen, Danhang Tang, Thabo Beeler, Mingsong Dou, yinda zhang, Sasa Petrovic, Hyung Jin Chang, Jonathan Taylor, Bardia Doosti
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images.
no code implementations • 4 Oct 2022 • Jiayi Wang, Diogo Luvizon, Franziska Mueller, Florian Bernard, Adam Kortylewski, Dan Casas, Christian Theobalt
Through this, we demonstrate the quality of our probabilistic reconstruction and show that explicit ambiguity modeling is better-suited for this challenging problem.
no code implementations • 22 Jun 2021 • Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne Sorli, Oleksandr Sotnychenko, Neng Qian, Miguel A. Otaduy, Dan Casas, Christian Theobalt
Moreover, we demonstrate that our approach offers previously unseen two-hand tracking performance from RGB, and quantitatively and qualitatively outperforms existing RGB-based methods that were not explicitly designed for two-hand interactions.
no code implementations • 15 Jun 2021 • Franziska Mueller, Micah Davis, Florian Bernard, Oleksandr Sotnychenko, Mickeal Verschoor, Miguel A. Otaduy, Dan Casas, Christian Theobalt
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands.
no code implementations • 30 Apr 2021 • Jalees Nehvi, Vladislav Golyanik, Franziska Mueller, Hans-Peter Seidel, Mohamed Elgharib, Christian Theobalt
This paper introduces the first differentiable simulator of event streams, i. e., streams of asynchronous brightness change signals recorded by event cameras.
1 code implementation • ICCV 2021 • Viktor Rudnev, Vladislav Golyanik, Jiayi Wang, Hans-Peter Seidel, Franziska Mueller, Mohamed Elgharib, Christian Theobalt
Due to the different data modality of event cameras compared to classical cameras, existing methods cannot be directly applied to and re-trained for event streams.
no code implementations • 6 Jul 2020 • Jiayi Wang, Franziska Mueller, Florian Bernard, Christian Theobalt
We propose to use a model-based generative loss for training hand pose estimators on depth images based on a volumetric hand model.
no code implementations • 24 Oct 2019 • Tarun Yenamandra, Florian Bernard, Jiayi Wang, Franziska Mueller, Christian Theobalt
We consider the problem of inverse kinematics (IK), where one wants to find the parameters of a given kinematic skeleton that best explain a set of observed 3D joint locations.
4 code implementations • 1 Jul 2019 • Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed Elgharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, Christian Theobalt
The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals. We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy.
Ranked #7 on 3D Multi-Person Pose Estimation on MuPoTS-3D
3D Multi-Person Human Pose Estimation 3D Multi-Person Pose Estimation +1
5 code implementations • 9 Dec 2017 • Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar, Gerard Pons-Moll, Christian Theobalt
Our approach uses novel occlusion-robust pose-maps (ORPM) which enable full body pose inference even under strong partial occlusions by other people and objects in the scene.
Ranked #3 on 3D Multi-Person Pose Estimation (root-relative) on MuPoTS-3D (MPJPE metric)
3D Human Pose Estimation 3D Multi-Person Pose Estimation (absolute) +2
no code implementations • CVPR 2018 • Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, Christian Theobalt
We address the highly challenging problem of real-time 3D hand tracking based on a monocular RGB-only sequence.
no code implementations • 16 Nov 2017 • Abhishake Kumar Bojja, Franziska Mueller, Sri Raghu Malireddi, Markus Oberweger, Vincent Lepetit, Christian Theobalt, Kwang Moo Yi, Andrea Tagliasacchi
We propose an automatic method for generating high-quality annotations for depth-based hand segmentation, and introduce a large-scale hand segmentation dataset.
no code implementations • ICCV 2017 • Franziska Mueller, Dushyant Mehta, Oleksandr Sotnychenko, Srinath Sridhar, Dan Casas, Christian Theobalt
We present an approach for real-time, robust and accurate hand pose estimation from moving egocentric RGB-D cameras in cluttered real environments.
no code implementations • 16 Oct 2016 • Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas, Antti Oulasvirta, Christian Theobalt
However, due to difficult occlusions, fast motions, and uniform hand appearance, jointly tracking hand and object pose is more challenging than tracking either of the two separately.
no code implementations • CVPR 2015 • Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, Christian Theobalt
In the optimization step, a novel objective function combines the detected part labels and a Gaussian mixture representation of the depth to estimate a pose that best fits the depth.