1 code implementation • 15 Sep 2024 • Frauke Wilm, Mathias Öttl, Marc Aubreville, Katharina Breininger
Recent advances in computer-aided diagnosis for histopathology have been largely driven by the use of deep learning models for automated image analysis.
1 code implementation • 8 Jul 2024 • Jingna Qiu, Marc Aubreville, Frauke Wilm, Mathias Öttl, Jonas Utz, Maja Schlereth, Katharina Breininger
Acquiring annotations for whole slide images (WSIs)-based deep learning tasks, such as creating tissue segmentation masks or detecting mitotic figures, is a laborious process due to the extensive image size and the significant manual work involved in the annotation.
no code implementations • 21 Mar 2024 • Mathias Öttl, Frauke Wilm, Jana Steenpass, Jingna Qiu, Matthias Rübner, Arndt Hartmann, Matthias Beckmann, Peter Fasching, Andreas Maier, Ramona Erber, Bernhard Kainz, Katharina Breininger
Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e. g., layout for segmentation.
no code implementations • 21 Mar 2024 • Mathias Öttl, Siyuan Mei, Frauke Wilm, Jana Steenpass, Matthias Rübner, Arndt Hartmann, Matthias Beckmann, Peter Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
However, there is a notable lack of analysis and discussions on the differences between diffusion segmentation and image generation, and thorough evaluations are missing that distinguish the improvements these architectures provide for segmentation in general from their benefit for diffusion segmentation specifically.
no code implementations • 13 Feb 2024 • Frauke Wilm, Jonas Ammeling, Mathias Öttl, Rutger H. J. Fick, Marc Aubreville, Katharina Breininger
Previous works showed that the trained network layers differ in their susceptibility to this domain shift, e. g., shallow layers are more affected than deeper layers.
no code implementations • 27 Sep 2023 • Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram
The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains.
1 code implementation • 14 Jul 2023 • Jingna Qiu, Frauke Wilm, Mathias Öttl, Maja Schlereth, Chang Liu, Tobias Heimann, Marc Aubreville, Katharina Breininger
We find that the efficiency of this method highly depends on the choice of AL step size (i. e., the combination of region size and the number of selected regions per WSI), and a suboptimal AL step size can result in redundant annotation requests or inflated computation costs.
1 code implementation • 11 Jan 2023 • Frauke Wilm, Marco Fragoso, Christof A. Bertram, Nikolas Stathonikos, Mathias Öttl, Jingna Qiu, Robert Klopfleisch, Andreas Maier, Katharina Breininger, Marc Aubreville
Additionally, to quantify the inherent scanner-induced domain shift, we train a tumor segmentation network on each scanner subset and evaluate the performance both in- and cross-domain.
no code implementations • 29 Nov 2022 • Frauke Wilm, Marco Fragoso, Christof A. Bertram, Nikolas Stathonikos, Mathias Öttl, Jingna Qiu, Robert Klopfleisch, Andreas Maier, Marc Aubreville, Katharina Breininger
Computer-aided systems in histopathology are often challenged by various sources of domain shift that impact the performance of these algorithms considerably.
no code implementations • 11 Nov 2022 • Mathias Öttl, Jana Mönius, Matthias Rübner, Carol I. Geppert, Jingna Qiu, Frauke Wilm, Arndt Hartmann, Matthias W. Beckmann, Peter A. Fasching, Andreas Maier, Ramona Erber, Katharina Breininger
We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology.
no code implementations • 6 Apr 2022 • Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, YuBo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen yang, Xiyue Wang, Mitko Veta, Katharina Breininger
The goal of the MICCAI MIDOG 2021 challenge has been to propose and evaluate methods that counter this domain shift and derive scanner-agnostic mitosis detection algorithms.
1 code implementation • 27 Jan 2022 • Frauke Wilm, Marco Fragoso, Christian Marzahl, Jingna Qiu, Chloé Puget, Laura Diehl, Christof A. Bertram, Robert Klopfleisch, Andreas Maier, Katharina Breininger, Marc Aubreville
Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging.
no code implementations • 25 Aug 2021 • Frauke Wilm, Christian Marzahl, Katharina Breininger, Marc Aubreville
This work presents a mitotic figure detection algorithm developed as a baseline for the challenge, based on domain adversarial training.
1 code implementation • 19 Aug 2021 • Christian Marzahl, Jenny Hill, Jason Stayt, Dorothee Bienzle, Lutz Welker, Frauke Wilm, Jörn Voigt, Marc Aubreville, Andreas Maier, Robert Klopfleisch, Katharina Breininger, Christof A. Bertram
Pulmonary hemorrhage (P-Hem) occurs among multiple species and can have various causes.
1 code implementation • MICCAI Workshop COMPAY 2021 • Christian Marzahl, Frauke Wilm, Christine Kröger, Franz F Dressler, Lars Tharun, Sven Perner, Christof Bertram, Jörn Voigt, Robert Klopfleisch, Andreas Maier, Marc Aubreville, Katharina Breininger
The registration of whole slide images (WSIs) provides the basis for many subsequent processing steps in digital pathology.
no code implementations • 30 Jun 2021 • Frauke Wilm, Michaela Benz, Volker Bruns, Serop Baghdadlian, Jakob Dexl, David Hartmann, Petr Kuritcyn, Martin Weidenfeller, Thomas Wittenberg, Susanne Merkel, Arndt Hartmann, Markus Eckstein, Carol I. Geppert
We propose a metric for identifying superpixels with an uncertain classification and evaluate two medical applications, namely tumor area and invasive margin estimation and tumor composition analysis.
no code implementations • 13 Jan 2021 • Christian Marzahl, Christof A. Bertram, Frauke Wilm, Jörn Voigt, Ann K. Barton, Robert Klopfleisch, Katharina Breininger, Andreas Maier, Marc Aubreville
We evaluated our pipeline in a cross-validation setup with a fixed training set using a dataset of six equine WSIs of which four are partially annotated and used for training, and two fully annotated WSI are used for validation and testing.
2 code implementations • 5 Jan 2021 • Christof A. Bertram, Taryn A. Donovan, Marco Tecilla, Florian Bartenschlager, Marco Fragoso, Frauke Wilm, Christian Marzahl, Katharina Breininger, Andreas Maier, Robert Klopfleisch, Marc Aubreville
For this study, we created the first open source data-set with 19, 983 annotations of BiNC and 1, 416 annotations of MuNC in 32 histological whole slide images of ccMCT.
no code implementations • 4 Dec 2020 • Frauke Wilm, Christof A. Bertram, Christian Marzahl, Alexander Bartel, Taryn A. Donovan, Charles-Antoine Assenmacher, Kathrin Becker, Mark Bennett, Sarah Corner, Brieuc Cossic, Daniela Denk, Martina Dettwiler, Beatriz Garcia Gonzalez, Corinne Gurtner, Annika Lehmbecker, Sophie Merz, Stephanie Plog, Anja Schmidt, Rebecca C. Smedley, Marco Tecilla, Tuddow Thaiwong, Katharina Breininger, Matti Kiupel, Andreas Maier, Robert Klopfleisch, Marc Aubreville
Density of mitotic figures in histologic sections is a prognostically relevant characteristic for many tumours.